化工学报 ›› 2021, Vol. 72 ›› Issue (9): 4872-4880.doi: 10.11949/0438-1157.20210194

• 能源和环境工程 • 上一篇    下一篇

高含水油包水乳液的水合物储气性能研究

王燕鸿(),姚凯,郎雪梅,樊栓狮()   

  1. 华南理工大学化学与化工学院,传热强化与过程节能教育部重点实验室,广东 广州 510640
  • 收稿日期:2021-01-31 修回日期:2021-04-29 出版日期:2021-09-05 发布日期:2021-09-05
  • 通讯作者: 樊栓狮 E-mail:wyh@scut.edu.cn;ssfan@scut.edu.cn
  • 作者简介:王燕鸿(1979—),女,博士,副研究员,wyh@scut.edu.cn
  • 基金资助:
    国家重点研发计划项目(2016YFC0304006);国家自然科学基金项目(51876069);广东省自然科学基金项目(2018A030313245)

Investigation on hydrate-based methane storage properties in water-in-oil emulsion with high water content

Yanhong WANG(),Kai YAO,Xuemei LANG,Shuanshi FAN()   

  1. Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2021-01-31 Revised:2021-04-29 Published:2021-09-05 Online:2021-09-05
  • Contact: Shuanshi FAN E-mail:wyh@scut.edu.cn;ssfan@scut.edu.cn

摘要:

油包水乳液是近年来新兴的一种水合强化材料,具有良好的水合储气潜力,但是为了保证乳液的稳定性,通常所用的油包水乳液含水量不超过50%。然而水合物的储气量与水含量密切相关,因此高含水的油包水乳液更具有应用前景。对含水量超过50%的油包水乳液进行了水合物的储甲烷研究,考察了乳化剂用量、初始压力及搅拌速率对储气性能的影响,最后考察了乳液的循环储气能力。结果表明:含水量超过55%后,含水量的增加会造成乳液液滴的增大,储气量的降低。乳液含水量为55%,复合乳化剂Span80 / Tween80(mTween80mSpan80=0.783∶1)用量5%(质量)(以水量为基准)的乳液最适合水合储气;初始压力的增加有利于水合储气性能的提高,但压力过高会造成水合物壳的快速形成,从而降低整体储气能力;适宜的搅拌速率有利于水合物的生成,过快或过慢都会引起水合速率的下降。本实验中最佳的乳液水合储气条件为:温度274.15 K、反应釜中气水体积比10∶1、甲烷初始压力6 MPa、搅拌速率700 r/min,在此条件下,储气量可达141.42 L 气/L 水。在此条件下进行循环储气实验证明该乳液具有良好的循环利用性,四次循环中储气量均在130 L 气/L 水以上。研究结果可为天然气储运以及含烃混合气分离提供技术参考。

关键词: 甲烷, 水合物, 乳液, 储气速率, 循环储气

Abstract:

Water-in-oil emulsion is a newly emerging hydration enhancement material in recent years. It has good hydration and gas storage potential. However, in order to ensure the stability of emulsion, the water content of the water-in-oil emulsion usually does not exceed 50%. The gas storage capacity of hydrate is closely related to the water content. Therefore, high water content water-in-oil emulsion has more application prospects. In this study, a water-in-oil emulsion with water content of 55% was produced and the methane hydrate formation experiment was carried out by using the emulsion. The effects of the amount of emulsifier, initial pressure, stirring rate and cyclic capacity were investigated. The results show that the increase of water content will lead to the increase of emulsion droplet and the decrease of gas storage when the water content is more than 55%. The water content of the emulsion is 55% with 5%(mass) (based on water content) of Span80 / Tween80 (mTween80mSpan80=0.783∶1) emulsion is the best emulsion for storing CH4. The increase of initial pressure is beneficial to the improvement of hydrated gas storage performance. However, too high pressure will lead to the rapid formation of hydrate shell and thus reduce the overall gas storage capacity. The appropriate stirring rate is conducive to hydrate formation. The optimal emulsion hydration and gas storage conditions were temperature of 274.15 K, gas-water volume ratio in the reactor of 10∶1, methane initial pressure of 6 MPa, and stirring rate of 700 r/min. In this condition, the gas storage capacity was 141.42 L gas/L water; further four-cyclic gas storage experiment proved that the emulsion had good recyclability, which cyclic gas storage capacity is above 130 L gas/L water. The research results can provide technical supporting for natural gas storage and transportation and hydrocarbon-containing mixed gas separation.

Key words: methane, hydrate, emulsion, hydration rate, cyclic gas storage

中图分类号: 

  • TE 82

表1

实验原料及试剂"

实验药品规格供应商
甲烷纯度≥99.9%广州盛盈气体有限公司
Span80化学纯天津科密欧化学试剂有限公司
Tween80化学纯天津科密欧化学试剂有限公司
正癸烷分析纯北京伊诺凯科技有限公司
去离子水电阻率≥ 18.25 MΩ?cm实验室自制

图1

静态甲烷水合实验装置示意图"

图2

搅拌甲烷水合实验装置示意图"

表2

不同水油比的乳液水合储气结果[T=273.15 K,P0=7 MPa,乳化剂用量:7%(质量)]"

实验组别含水量液相体积/ml诱导时间/h储气量/(L 气/L 水)最高储气速率/(L 气/(L 水?h))
1纯水50无水合
2纯水+7%(质量)S80/T8050无水合
330%50无水合
440%50无水合
550%50无水合
655%503.8022.2519.61
760%500.1917.2649.56
870%504.0112.0715.08

图3

不同水油比的乳液微观形貌[乳化剂用量:7%(质量),da代表平均粒径]"

表3

不同乳化剂用量的乳液水合储气结果[T=273.15 K,P0=7 MPa,水油比:55/45]"

实验组别乳化剂用量/%(质量)液相体积/ml诱导时间/h储气量/(L 气/L 水)最高储气速率/(L 气/(L 水?h))
1150无水合
2350无水合
35501.0525.3125.13
47503.8022.2519.61

图4

不同乳化剂用量的乳液微观形貌(水油比:55/45,da代表平均粒径)"

图5

压力6.08 MPa条件下乳液水合储气动力学(T=274.15 K,时间零点对应诱导成核点)"

图6

不同压力条件下乳液水合储气量-时间曲线(T=274.15 K,搅拌速率900 r/min,时间零点对应诱导成核点)"

图7

不同搅拌速率体系中乳液水合储气量-时间曲线(T=274.15 K,P0=6 MPa,时间零点对应诱导成核点)"

图8

乳液循环水合储气量-时间曲线(T=274.15 K,P0=6 MPa,时间零点对应诱导成核点)"

图9

实验前后乳液的微观形貌对比(da代表平均粒径)"

1 Veluswamy H P, Kumar A, Seo Y, et al. A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates[J]. Applied Energy, 2018, 216: 262-285.
2 Linga P, Kumar R, Lee J D, et al. A new apparatus to enhance the rate of gas hydrate formation: application to capture of carbon dioxide[J]. International Journal of Greenhouse Gas Control, 2010, 4(4): 630-637.
3 Ke W, Svartaas T M. Effects of stirring and cooling on methane hydrate formation in a high-pressure isochoric cell[J]. Journal of Materials Science and Engineering, B, 2013, 3(7): 436-444.
4 Qureshi M F, Atilhan M, Altamash T, et al. High-pressure gas hydrate autoclave hydraulic experiments and scale-up modeling on the effect of stirring RPM effect[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 50-58.
5 Rossi F, Filipponi M, Castellani B. Investigation on a novel reactor for gas hydrate production[J]. Applied Energy, 2012, 99: 167-172.
6 Li X S, Xu C G, Yu Y S, et al. Apparatus and combined process for carbon dioxide gas separation: US10183865[P]. 2019-01-22.
7 樊栓狮, 杨亮, 郎雪梅, 等. 一种喷射制备气体水合物的可视化装置: 101543736A[P]. 2009-09-30.
Fan S S, Yang L, Lang X M, et al. Visualization device for preparing gas hydrate in a spraying way: 101543736A[P]. 2009-09-30.
8 Takahashi M, Kawamura T, Yamamoto Y, et al. Effect of shrinking microbubble on gas hydrate formation[J]. The Journal of Physical Chemistry B, 2003, 107(10): 2171-2173.
9 Xu C G, Li X S, Lv Q N, et al. Hydrate-based CO2 (carbon dioxide) capture from IGCC (integrated gasification combined cycle) synthesis gas using bubble method with a set of visual equipment[J]. Energy, 2012, 44(1): 358-366.
10 申小冬, 任俊杰, 梁德青. 微型鼓泡器中甲烷水合物的生成特性[J]. 石油化工, 2018, 47(5): 431-436.
Shen X D, Ren J J, Liang D Q. Formation characteristics of methane hydrate in a micro-bubbler[J]. Petrochemical Technology, 2018, 47(5): 431-436.
11 Yoslim J, Linga P, Englezos P. Enhanced growth of methane-propane clathrate hydrate crystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecyl sulfate surfactants[J]. Journal of Crystal Growth, 2010, 313(1): 68-80.
12 Chen J, Wang T, Zeng Z, et al. Oleic acid potassium soap: a new potential kinetic promoter for methane hydrate formation[J]. Chemical Engineering Journal, 2019, 363: 349-355.
13 Farhadian A, Varfolomeev M A, Abdelhay Z, et al. Accelerated methane hydrate formation by ethylene diamine tetraacetamide as an efficient promoter for methane storage without foam formation[J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 7752-7760.
14 Lee J, Shin C, Lee Y. Experimental investigation to improve the storage potentials of gas hydrate under the unstirring condition[J]. Energy & Fuels, 2010, 24(2): 1129-1134.
15 Li R L, Liu D P, Yang L, et al. Rapid methane hydrate formation in aluminum honeycomb[J]. Fuel, 2019, 252: 574-580.
16 Yang L, Liu Z Z, Liu D P, et al. Enhanced natural gas hydrates formation in the suspension with metal particles and fibers[J]. Journal of Molecular Liquids, 2020, 301: 112410.
17 Pahlavanzadeh H, Rezaei S, Khanlarkhani M, et al. Kinetic study of methane hydrate formation in the presence of copper nanoparticles and CTAB[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 803-810.
18 Liu W G, Wang L J, Yang M J, et al. Experimental study on the methane hydrate formation from ice powders[J]. Energy Procedia, 2014, 61: 619-623.
19 Rivera J J, Janda K C. Ice particle size and temperature dependence of the kinetics of propane clathrate hydrate formation[J]. The Journal of Physical Chemistry C, 2012, 116(36): 19062-19072.
20 Wang Z, Liu W G, Li Y H, et al. Influence of porous media on methane hydrate formation from ice powders[J]. Energy Procedia, 2017, 105: 224-229.
21 Wang W X, Bray C L, Adams D J, et al. Methane storage in dry water gas hydrates[J]. Journal of the American Chemical Society, 2008, 130(35): 11608-11609.
22 Podenko L S, Drachuk A O, Molokitina N S, et al. Effect of silica nanoparticles on dry water gas hydrate formation and self-preservation efficiency[J]. Russian Journal of Physical Chemistry A, 2018, 92(2): 255-261.
23 Fan S S, Yang L, Wang Y H, et al. Rapid and high capacity methane storage in clathrate hydrates using surfactant dry solution[J]. Chemical Engineering Science, 2014, 106: 53-59.
24 Turner D J, Miller K T, Sloan E D. Direct conversion of water droplets to methane hydrate in crude oil[J]. Chemical Engineering Science, 2009, 64(23): 5066-5072.
25 Mu L, Li S, Ma Q L, et al. Experimental and modeling investigation of kinetics of methane gas hydrate formation in water-in-oil emulsion[J]. Fluid Phase Equilibria, 2014, 362: 28-34.
26 Lv X, Shi B H, Wang Y, et al. Study on gas hydrate formation and hydrate slurry flow in a multiphase transportation system[J]. Energy & Fuels, 2013, 27(12): 7294-7302.
27 徐勇军, 杨晓西. 乳液中甲烷水合物的生成反应实验[J]. 天然气工业, 2009, 29(2): 123-126.
Xu Y J, Yang X X. Tests of the formation of methane hydrates in the emulsion[J]. Natural Gas Industry, 2009, 29(2): 123-126.
28 徐勇军, 杨晓西. 微乳中甲烷水合物的生成反应[J]. 江苏大学学报(自然科学版), 2009, 30(2): 193-196.
Xu Y J, Yang X X. Methane hydrate formation in micro-emulsion[J]. Journal of Jiangsu University(Natural Science Edition), 2009, 30(2): 193-196.
29 陈英楠. 油包水乳液中甲烷水合物的生成动力学研究[D]. 天津: 天津大学, 2014.
Chen Y N. Study on kinetic of methane hydrate formation in water-in-oil emulsion[D]. Tianjin: Tianjin University, 2014.
30 Li X G, Chen C, Chen Y N, et al. Kinetics of methane clathrate hydrate formation in water-in-oil emulsion[J]. Energy & Fuels, 2015, 29(4): 2277-2288.
31 Wang Z, Ma G Y, Shang L Y, et al. Effect of a nonionic surfactant on the formation of natural gas hydrate in a diesel emulsion system[J]. Petroleum Science and Technology, 2018, 36(23): 2017-2023.
32 Pan Z, Wang Z, Zhang Z E, et al. Natural gas hydrate formation dynamics in a diesel water-in-oil emulsion system[J]. Petroleum Science and Technology, 2018, 36(20): 1649-1656.
33 Azam M Z, Xin F, Song Y X, et al. Rate enhancement of methane hydration in slurry of ice by phase change of water-in-oil emulsions[J]. Fuel, 2019, 244: 296-303.
34 马沛生, 华超, 夏淑倩. 甲烷在烷烃中溶解性质的研究[J]. 高校化学工程学报, 2002, 16(6): 680-685.
Ma P S, Hua C, Xia S Q. Study of the solubility of methane in alkanes[J]. Journal of Chemical Engineering of Chinese Universities, 2002, 16(6): 680-685.
[1] 谢瑶, 李剑锐, 胡海涛. 印刷电路板式换热器内超临界甲烷流动换热特性模拟[J]. 化工学报, 2021, 72(S1): 203-209.
[2] 吴中杰, 刘则艳, 谢连科, 崔美, 黄仁亮. 聚偏氟乙烯膜亲水改性及其乳液分离与重金属吸附应用[J]. 化工学报, 2021, 72(S1): 421-429.
[3] 陈立涛, 孙宝江, 张宁涛, 周万田, 王昊天, 陈野, 卢海龙. 石英砂中甲烷水合物的溶解开采实验研究[J]. 化工学报, 2021, 72(8): 4336-4345.
[4] 戴琼斌, 刘宏斌, 夏启斌, 周欣, 李忠. 一种新的颗粒炭材料的制备及其高效分离甲烷氮气性能[J]. 化工学报, 2021, 72(8): 4196-4203.
[5] 赵林洲, 郑燕娥, 李孔斋, 王亚明, 蒋丽红, 范浩熙, 王雅静, 祝星, 魏永刚. Ce1-xNixOy氧载体在化学链甲烷重整耦合CO2还原中的应用[J]. 化工学报, 2021, 72(8): 4371-4380.
[6] 柯蓝婷, 王远鹏, 郑艳梅, 李清彪. 生物甲烷系统的组分分析与综合评价[J]. 化工学报, 2021, 72(7): 3801-3813.
[7] 李明川, 樊栓狮, 徐赋海, 严科, 黄爱先. 天然气水合物热分解Stefan相变数学模拟研究[J]. 化工学报, 2021, 72(6): 3252-3260.
[8] 高子熹, 郭树奇, 费强. 生物转化温室气体生产单细胞蛋白的研究进展[J]. 化工学报, 2021, 72(6): 3202-3214.
[9] 程文静, 余林, 程高, 钟远红, 郑成, 毛桃嫣. 多羟基Bola有机硅季铵盐的合成、表征及其应用性能[J]. 化工学报, 2021, 72(5): 2837-2848.
[10] 茹绍青, 武亚飞, 车黎明. 低过冷度石蜡Pickering乳液的制备和表征[J]. 化工学报, 2021, 72(4): 2309-2316.
[11] 李梦钖, 高明, 左启蓉, 章立新, 赵玉刚. 过冷壁面液滴中四丁基溴化铵水合物生成的可视化研究[J]. 化工学报, 2021, 72(4): 2094-2101.
[12] 马正东, 韦梅秀, 卢琪霖, 地力亚尔·哈米提null, 陈晓. 超大宽高比螺旋板式微通道对O/W乳状液的破乳研究[J]. 化工学报, 2021, 72(3): 1392-1399.
[13] 李秉繁, 刘刚, 陈雷. 基于分子动力学模拟的CH4溶解对原油分子间作用的影响机制研究[J]. 化工学报, 2021, 72(3): 1253-1263.
[14] 曹佳宁, 高翔, 罗英武, 苏荣欣. 一种用于磷酸铁锂电极的水性黏结剂制备与性能研究[J]. 化工学报, 2021, 72(2): 1169-1180.
[15] 钮朝阳, 江南, 沈圆辉, 吴统波, 刘冰, 张东辉. 快速变压吸附制氢工艺的模拟与分析[J]. 化工学报, 2021, 72(2): 1036-1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PatrickPERRE. 硬木中流体移动的双尺度多孔机理的依据(Ⅱ)描述实验结果的双尺度计算模型[J]. CIESC Journal, 2004, 12(6): 783 -791 .
[2] 刘植昌, 孟祥海, 徐春明, 高金森. 重油催化裂解汽柴油二次裂解性能研究[J]. CIESC Journal, 2007, 15(3): 309 -314 .
[3] 黄福明,张国伟,胡春圃,应圣康. 硅溶胶/苯乙烯-丙烯酸酯共聚物无机-有机杂化水分散液的制备和表征[J]. CIESC Journal, 2005, 13(6): 816 -823 .
[4] 孙海翔, 张林, 柴红, 陈欢林. 壳聚糖亲和膜脱除蛋白质溶液中的内毒素[J]. CIESC Journal, 2005, 13(4): 457 -463 .
[5] 张宇,周力行,魏小林,盛宏至. 进口甲烷再燃烧对煤粉燃烧以及NOx生成影响的数值模拟[J]. CIESC Journal, 2005, 13(3): 318 -323 .
[6] 刘永健, 袁希钢, 罗祎青. 基于浓度间隔分析的用水系统集成(II)不连续过程[J]. CIESC Journal, 2007, 15(3): 369 -375 .
[7] 罗艳托, 朱建华, 陈光进. 鼓泡塔中水合物法分离混合气体的数值模拟[J]. CIESC Journal, 2007, 15(3): 345 -352 .
[8] 王斐, 汪文川, 黄世萍, 滕加伟, 谢在库. 正丁烷及丁烯-1在不同硅铝比ZSM-5分子筛上吸附的实验与模型[J]. CIESC Journal, 2007, 15(3): 376 -386 .
[9] 刘亚青, 赵贵哲. 三聚氯化磷腈微胶囊阻燃剂/聚丙烯复合材料的性能研究[J]. CIESC Journal, 2007, 15(3): 429 -432 .
[10] 王宏智, 姚素薇, 张卫国. 电沉积Ni-W梯度镀层及其结构表征[J]. CIESC Journal, 2003, 11(3): 348 -351 .