化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1754-1762.DOI: 10.11949/0438-1157.20211593
孙敏1,2,3(),贾辉1,2,3(
),秦卿雯1,3,4,王琦5,郭子楠5,罗艳茹1,2,3,王捷1,2,3
收稿日期:
2021-11-09
修回日期:
2022-02-09
出版日期:
2022-04-05
发布日期:
2022-04-25
通讯作者:
贾辉
作者简介:
孙敏(1996—),女,硕士研究生,基金资助:
Min SUN1,2,3(),Hui JIA1,2,3(
),Qingwen QIN1,3,4,Qi WANG5,Zinan GUO5,Yanru LUO1,2,3,Jie WANG1,2,3
Received:
2021-11-09
Revised:
2022-02-09
Online:
2022-04-05
Published:
2022-04-25
Contact:
Hui JIA
摘要:
基于电阻抗成像(electrical impedance tomography,EIT)的原位可视化特征,以酵母与高岭土为模型污染物,在不同错流速度下对超滤(UF)膜不同的污染过滤特性进行了研究,得到通量变化、平均电压变化、EIT图像,进行了三维图像重建,并建立了膜通量与平均电压间的相关性模型。结果表明:EIT图可直观显示膜污染界面的变化情况,酵母溶液形成的膜污染呈现空间上的不均匀分布,而高岭土溶液形成的膜污染较为均匀,混合溶液形成的污染分布居于两者之间。通过EIT信号的重建图像得到了有关污染层厚度方面的信息,结果表明,酵母形成的污染层最厚,其次为酵母及高岭土混合溶液,污染层最薄的为高岭土溶液。
中图分类号:
孙敏, 贾辉, 秦卿雯, 王琦, 郭子楠, 罗艳茹, 王捷. 电阻抗成像原位在线监测超滤膜污染行为研究[J]. 化工学报, 2022, 73(4): 1754-1762.
Min SUN, Hui JIA, Qingwen QIN, Qi WANG, Zinan GUO, Yanru LUO, Jie WANG. In-situ online monitoring of ultrafiltration membrane fouling based on electrical impedance tomography[J]. CIESC Journal, 2022, 73(4): 1754-1762.
图1 实验装置图(a) 实验装置示意图;(b) EIT评价池分解图;(c) 实验装置实物连接图1—计算机;2—渗透液罐;3—电子天平;4—图像处理系统;5—蠕动泵;6—压力传感器;7—无纸记录仪;8—评价池;9—数据采集与处理单元;10—蠕动泵;11—进料液罐
Fig.1 Schematic diagram of experimental device(a) Schematic diagram of experimental device; (b) Exploded diagram of EIT evaluation pool; (c) The experimental device1—computer; 2—permeate tank; 3—electronic balance; 4—image processing system; 5—peristaltic pump; 6—pressure sensor; 7—paperless recorder; 8—evaluation pool; 9—data acquisition and processing unit; 10—peristaltic pump; 11—feed solution tank
图4 180 min内酵母溶液(a)、高岭土溶液(b)、酵母和高岭土混合溶液(c)比通量、平均电压、EIT图随过滤时间的变化
Fig.4 Specific flux, average voltage, EIT image chart changes of yeast solution (a), kaolin solution (b), yeast and kaolin mixture solution (c) with filtration time within 180 min
图5 180 min内酵母溶液、高岭土溶液、酵母及高岭土混合溶液在不同成像截面的三维曲面图
Fig.5 Three-dimensional surface diagrams of yeast solution, kaolin solution, yeast and kaolin mixture solution in different imaging sections within 180 min
图6 酵母溶液在错流速度为0.1 m/s(a)和0.2 m/s(b)时180 min内通量变化、平均电压变化及EIT图
Fig.6 The flux change, average voltage change and EIT image of the yeast solution at a cross-flow velocity of 0.1 m/s (a) and 0.2 m/s (b) within 180 min
图7 高岭土溶液在错流速度为0.1 m/s(a)和0.2 m/s(b)时180 min内通量变化、平均电压变化及EIT图
Fig.7 The flux change, average voltage change and EIT image of the kaolin solution at a cross-flow velocity of 0.1 m/s (a) and 0.2 m/s (b) within 180 min
图8 酵母及高岭土混合溶液在错流速度为0.1 m/s(a)和0.2 m/s(b)时180 min内通量变化、平均电压变化及EIT图
Fig.8 The flux change, average voltage change and EIT image of the yeast and kaolin mixed solution at a cross-flow velocity of 0.1 m/s (a) and 0.2 m/s (b) within 180 min
1 | 邢卫红, 仲兆祥, 景文珩, 等. 基于膜表面与界面作用的膜污染控制方法[J]. 化工学报, 2013, 64(1): 173-181. |
Xing W H, Zhong Z X, Jing W H, et al. Controlling of membrane fouling based on membrane interface interactions[J]. CIESC Journal, 2013, 64(1): 173-181. | |
2 | Peiris R H, Budman H, Moresoli C, et al. Development of a species specific fouling index using principal component analysis of fluorescence excitation-emission matrices for the ultrafiltration of natural water and drinking water production[J]. Journal of Membrane Science, 2011, 378(1/2): 257-264. |
3 | 王旭亮, 李宗雨, 董泽亮, 等. 超滤技术在水处理中的膜污染及控制[J]. 当代化工, 2019, 48(9): 2151-2153, 2157. |
Wang X L, Li Z Y, Dong Z L, et al. Membrane fouling and control of ultrafiltration technology in water treatment[J]. Contemporary Chemical Industry, 2019, 48(9): 2151-2153, 2157. | |
4 | Goh P S, Lau W J, Othman M H D, et al. Membrane fouling in desalination and its mitigation strategies[J]. Desalination, 2018, 425: 130-155. |
5 | Park D J, Supekar O D, Greenberg A R, et al. Real-time monitoring of calcium sulfate scale removal from RO desalination membranes using Raman spectroscopy[J]. Desalination, 2021, 497: 114736. |
6 | Yu W M, Liu Y, Xu Y C, et al. A conductive PVDF-Ni membrane with superior rejection, permeance and antifouling ability via electric assisted in situ aeration for dye separation[J]. Journal of Membrane Science, 2019, 581: 401-412. |
7 | Vrijenhoek E M, Hong S, Elimelech M. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes[J]. Journal of Membrane Science, 2001, 188(1): 115-128. |
8 | Marroquin M, Vu A, Bruce T, et al. Location and quantification of biological foulants in a wet membrane structure by cross-sectional confocal laser scanning microscopy[J]. Journal of Membrane Science, 2014, 453: 282-291. |
9 | Chen J C, Li Q L, Elimelech M. In situ monitoring techniques for concentration polarization and fouling phenomena in membrane filtration[J]. Advances in Colloid and Interface Science, 2004, 107(2/3): 83-108. |
10 | Li H, Fane A G, Coster H G L, et al. Direct observation of particle deposition on the membrane surface during crossflow microfiltration[J]. Journal of Membrane Science, 1998, 149(1): 83-97. |
11 | Gao Y B, Haavisto S, Li W Y, et al. Novel approach to characterizing the growth of a fouling layer during membrane filtration via optical coherence tomography[J]. Environmental Science & Technology, 2014, 48(24): 14273-14281. |
12 | Hammer B E, Heath C A, Mirer S D, et al. Quantitative flow measurements in bioreactors by nuclear magnetic resonance imaging[J]. Bio/Technology, 1990, 8 (4): 327-330. |
13 | Azizighannad S, Intrchom W, Mitra S. Raman imaging of membrane fouling[J]. Separation and Purification Technology, 2020, 242: 116763. |
14 | 周勇. 基于电场特征空间映射的深度学习电阻抗成像方法研究[D]. 天津: 天津工业大学, 2019. |
Zhou Y. Research on deep learning electrical impedance imaging method based on electric field feature space mapping[D]. Tianjin: Tianjin Polytechnic University, 2019. | |
15 | Cherepenin V A, Karpov A Y, Korjenevsky A V, et al. Three-dimensional EIT imaging of breast tissues: system design and clinical testing[J]. IEEE Transactions on Medical Imaging, 2002, 21(6): 662-667. |
16 | Kim M, Kim H, Jang J, et al. 21.2 A 1.4mΩ-sensitivity 94dB-dynamic-range electrical impedance tomography SoC and 48-channel Hub SoC for 3D lung ventilation monitoring system[C]//2017 IEEE International Solid-State Circuits Conference. IEEE, 2017: 354-355. |
17 | Xu C H, Dai M, You F S, et al. An optimized strategy for real-time hemorrhage monitoring with electrical impedance tomography[J]. Physiological Measurement, 2011, 32(5): 585-598. |
18 | 周小勇, 余佳干, 李田军, 等. 电阻抗成像技术在水泥基材料渗水检测中的应用[J]. 无损检测, 2017, 39(4): 26-30. |
Zhou X Y, Yu J G, Li T J, et al. Application of electrical impedance tomography on water seepage nondestructive testing of cementitious material[J]. Nondestructive Testing, 2017, 39(4): 26-30. | |
19 | 孙国中, 孙强. 基于电阻抗成像的土壤测控系统[J]. 科学技术与工程, 2020, 20(13): 5180-5185. |
Sun G Z, Sun Q. Soil measurement and control system based on electrical resistance imaging[J]. Science Technology and Engineering, 2020, 20(13): 5180-5185. | |
20 | 刘宗毓. 面向水质监测的动态电阻抗成像方法研究[D]. 天津: 天津工业大学, 2020. |
Liu Z Y. Research on dynamic electrical impedance imaging method for water quality monitoring[D]. Tianjin: Tianjin Polytechnic University, 2020. | |
21 | 窦唱. 基于阵列阻抗测量的膜完整性智能检测方法研究 [D]. 天津工业大学,2021. |
Tianjin: Dou C. Research on intelligent detection method of membrane integrity based on array impedance measurement[D]. Tianjin: Tiangong University, 2021. | |
22 | 张鹏程. 基于块稀疏的电阻抗成像方法研究[D]. 天津: 天津工业大学, 2019. |
Zhang P C. Research on electrical impedance imaging method based on block sparseness[D]. Tianjin: Tianjin Polytechnic University, 2019. | |
23 | Wang Q, Lian Z J, Wang J M, et al. Accelerated reconstruction of electrical impedance tomography images via patch based sparse representation[J]. The Review of Scientific Instruments, 2016, 87(11): 114707. |
24 | 孙丽华, 俞天敏, 田海龙, 等. 典型有机物与超滤膜界面作用及膜污染机制研究[J]. 环境科学学报, 2016, 36(2): 530-536. |
Sun L H, Yu T M, Tian H L, et al. Interaction of typical organic matters on ultrafiltration membrane and the mechanism of membrane fouling[J]. Acta Scientiae Circumstantiae, 2016, 36(2): 530-536. | |
25 | 袁栋栋, 樊耀波, 徐国梁, 等. 玻璃纤维编织管覆膜改性及其动态膜生物反应器研究[J]. 环境科学, 2009, 30(8): 2332-2341. |
Yuan D D, Fan Y B, Xu G L, et al. Dynamic membrane bioreactor with glass fiber tube covered with organic membrane[J]. Environmental Science, 2009, 30(8): 2332-2341. | |
26 | 李俊, 奚旦立, 石勇. 动态膜处理污水时阻力分布及污染机理[J]. 化工学报, 2008, 59(9): 2309-2315. |
Li J, Xi D L, Shi Y. Resistance distribution and fouling mechanism of dynamic membrane in wastewater treatment[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(9): 2309-2315. | |
27 | Ma G, Hao Z L, Wu X, et al. An optimal electrical impedance tomography drive pattern for human-computer interaction applications[J]. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14(3): 402-411. |
28 | 王化祥. 电学层析成像技术[J]. 自动化仪表, 2017, 38(5): 1-6. |
Wang H X. Electrical tomography technology[J]. Process Automation Instrumentation, 2017, 38(5): 1-6. | |
29 | Dai H B, Gallo G J, Schumacher T, et al. A novel methodology for spatial damage detection and imaging using a distributed carbon nanotube-based composite sensor combined with electrical impedance tomography[J]. Journal of Nondestructive Evaluation, 2016, 35(2): 1-15. |
30 | Riera J, Riu P J, Casan P, et al. Electrical impedance tomography in acute lung injury[J]. Medicina Intensiva (English Edition), 2011, 35(8): 509-517. |
31 | 张静婉. 基于深度学习字典的电阻抗稀疏成像算法研究[D]. 天津: 天津工业大学, 2019. |
Zhang J W. Research on electrical impedance sparse imaging algorithm based on deep learning dictionary[D]. Tianjin: Tianjin Polytechnic University, 2019. | |
32 | 房晓东. 电阻抗图像重建算法研究[D]. 天津: 天津科技大学, 2015. |
Fang X D. Research on image reconstruction algorithm of electrical impedance tomography[D]. Tianjin: Tianjin University of Science & Technology, 2015. | |
33 | Wang Q, Dou C, Xin C C, et al. Monitoring of membrane integrity based on electrical measurement and deep learning[J]. IEEE Sensors Journal, 2021, 21(6): 8020-8029. |
34 | 唐娟. 混凝-超滤工艺中高分子助凝剂与膜污染物间的“助凝-污染”机制研究[D]. 天津: 天津工业大学, 2020. |
Tang J. Study on the mechanism of “coagulation aid-fouling” between polymer coagulant aids and membrane pollutants in coagulation-ultrafiltration process[D]. Tianjin: Tiangong University, 2020. | |
35 | Zhang W X, Luo J Q, Ding L H, et al. A review on flux decline control strategies in pressure-driven membrane processes[J]. Industrial & Engineering Chemistry Research, 2015, 54(11): 2843-2861. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[8] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[9] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[10] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[11] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[12] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[13] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[14] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[15] | 陈朝光, 贾玉香, 汪锰. 以低浓度废酸驱动中和渗析脱盐的模拟与验证[J]. 化工学报, 2023, 74(6): 2486-2494. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 515
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 368
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||