1 |
朱杰, 崔宇, 陈元君, 等. 甲醇制烯烃过程研究进展[J]. 化工学报, 2010, 61(7): 1674-1684.
|
|
ZhuJ, CuiY, ChenY J, et al. Recent researches on process from methanol to olefins[J]. CIESC Journal, 2010,61(7):1674-1684.
|
2 |
吴文章, 郭文瑶, 肖文德, 等. 甲醇与C4 ~C6烯烃共反应制丙烯副产物生成途径[J]. 化工学报, 2012, 61(2): 493-499.
|
|
WuW Z, GuoW Y, XiaoW D, et al. Reaction path for formation of by-products in co-reaction of methanol and C4—C6 alkenes to propylene[J]. CIESC Journal, 2012, 63(2): 493-499.
|
3 |
TaoY J, SmithG P, WangH. Critical kinetics uncertainties in modeling hydrogen/carbon monoxide, methane, methanol, formaldehyde, and ethylene combustion[J]. Combustion and Flame, 2018, 195: 18-29.
|
4 |
GibbsG J, CalcoteH F. Effect of molecular structure on burning velocity[J]. Journal of Chemical and Engineering Data, 1959, 4(3): 226-237.
|
5 |
MetghalC M, KeckJ C. Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature[J]. Combustion and Flame, 1982, 48: 191-210.
|
6 |
Gülder ÖL. Laminar burning velocities of methanol, ethanol and isooctane-air mixtures[J]. Symposium (International) on Combustion, 1982, 19(1): 275-281.
|
7 |
SaeedK, StoneC R. Measurements of the laminar burning velocity for mixtures of methanol and air from a constant-volume vessel using a multizone model[J]. Combustion and Flame, 2004, 139(1): 152-166.
|
8 |
ZhangZ, HuangZ, WangX, et al. Measurements of laminar burning velocities and Markstein lengths for methanol–air–nitrogen mixtures at elevated pressures and temperatures[J]. Combustion and Flame, 2008, 155(3): 358-368.
|
9 |
BeeckmannJ, CailL, PitschH. Experimental investigation of the laminar burning velocities of methanol, ethanol, n-propanol, and n-butanol at high pressure[J]. Fuel, 2014, 117: 340-350.
|
10 |
VancoillieJ, ChristensenM, NilssonE J K, et al. Temperature dependence of the laminar burning velocity of methanol flames[J]. Energy & Fuels, 2012, 26(3): 1557-1564.
|
11 |
SileghemL, AlekseevV A, VancoillieJ, et al. Laminar burning velocities of primary reference fuels and simple alcohols[J]. Fuel, 2014, 115: 32-40.
|
12 |
EgolfopoulosF N, DuD X, LawC K. A comprehensive study of methanol kinetics in freely-propagating and burner-stabilized flames, flow and static reactors, and shock tubes[J]. Combustion Science and Technology, 1992, 83(1/2/3): 33-75.
|
13 |
VelooP S, WangY L, EgolfopoulosF N, et al. A comparative experimental and computational study of methanol, ethanol, and n-butanol flames[J]. Combustion and Flame, 2010, 157(10): 1989-2004.
|
14 |
WestbrookC K, DryerF L. Comprehensive mechanism for methanol oxidation[J]. Combustion Science and Technology, 1979, 20(3/4): 125-140.
|
15 |
BradleyD, DixonL G, HabikS E D, et al. Laminar flame structure and burning velocities of premixed methanol-air[J]. Combustion and Flame, 1991, 85(1): 105-120.
|
16 |
HeldT J, DryerF L. A comprehensive mechanism for methanol oxidation[J]. International Journal of Chemical Kinetics, 1998, 30(11): 805-830.
|
17 |
LiJ, ZhaoZ, KazakovA, et al. A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion[J]. International Journal of Chemical Kinetics, 2007, 39(3): 109-136.
|
18 |
BurkeU, MetcalfeW K, BurkeS M, et al. A detailed chemical kinetic modeling, ignition delay time and jet-stirred reactor study of methanol oxidation[J]. Combustion and Flame, 2016, 165: 125-136.
|
19 |
WangH, YouX Q, JoshiA V, et al. USC Mech version Ⅱ. High-temperature combustion reaction model of H2/CO/C1-C4compounds[EB/OL]. [2007-5]..
|
20 |
KeeJ, GrcarK, SmookeM D, et al. Premix: a Fortran program for modelling steady laminar one-dimensional premixed flames[R]. Livermore, CA: SANDIA National Laboratories, SAND85-8240, 1985.
|
21 |
EgolfopoulosF N. Geometric and radiation effects on steady and unsteady strained laminar flames[J]. Proceedings of the Combustion Institute, 1994, 25(1): 1375-1381.
|
22 |
KeeR J, RuplyF M, MillerJ A. Chemkin-Ⅱ: a Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics[R]. Livermore, CA. Sandia National Laboratories, Report SAND89-8009, 1989.
|
23 |
KeeR J, DixonL G, WarnatzJ, et al. A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties[R]. Sandia National Laboratories Report SAND86-8246, 1986.
|
24 |
EduardoF T, MarioS S, AntonioL S, et al. A multipurpose reduced chemical-kinetic mechanism for methanol combustion[J]. Combustion Theory and Modelling, 2016, 20(4): 613-631.
|
25 |
LawC K. Combustion Physics[M]. New York: Cambridge University Press, 2006: 14-16.
|
26 |
MeanaP R, XuX F, MaH, et al. Computational kinetics by variational transition-state theory with semiclassical multidimensional tunneling: direct dynamics rate constants for the abstraction of H from CH3OH by Triplet oxygen atoms[J]. The Journal of Physical Chemistry A, 2017, 121(8): 1693-1707.
|
27 |
GaoL G, ZhengJ, FernandezR A, et al. Kinetics of the methanol reaction with OH at interstellar, atmospheric, and combustion temperatures[J]. J. Am Chem. Soc., 2018, 140(8): 2906-2918.
|
28 |
XuS, LinM C. Theoretical study on the kinetics for OH reactions with CH3OH and C2H5OH[J]. Proceedings of the Combustion Institute, 2007, 31(1): 159-166.
|
29 |
MeanaP R, TruhlarD G, FernÁndezR A. High-level direct-dynamics variational transition state theory calculations including multidimensional tunneling of the thermal rate constants, branching ratios, and kinetic isotope effects of the hydrogen abstraction reactions from methanol by atomic hydrogen[J]. The Journal of Chemical Physics, 2011, 134(9): 094302.
|
30 |
MüllerU C, BolligM, PetersN. Approximations for burning velocities and Markstein numbers for lean hydrocarbon and methanol flames[J]. Combustion and Flame, 1997, 108(3): 349-356.
|