化工学报 ›› 2019, Vol. 70 ›› Issue (7): 2684-2690.DOI: 10.11949/0438-1157.20190139
涂玉波1,2(),韩培伟1,魏连启1,仉小猛1,杜英超1,2,王永良1,叶树峰1(
)
收稿日期:
2019-02-21
修回日期:
2019-04-16
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
叶树峰
作者简介:
涂玉波(1975—),男,硕士,高级工程师,<email>tuyubo-1@163.com</email>
Yubo TU1,2(),Peiwei HAN1,Lianqi WEI1,Xiaomeng ZHANG1,Yingchao DU1,2,Yongliang WANG1,Shufeng YE1(
)
Received:
2019-02-21
Revised:
2019-04-16
Online:
2019-07-05
Published:
2019-07-05
Contact:
Shufeng YE
摘要:
氰化提金过程中产生大量的氰化渣,被视为是危险固体废物。氰化渣主要由黄铁矿、石英和硅酸盐等矿物组成。本实验采取静态吸附法,模拟了氰化渣中几种典型矿物及其复合矿物对氰的吸附。研究表明:矿物对氰的吸附呈线性特征,但吸附能力各不相同, 各矿物对氰的吸附量大小顺序是q黄铁矿>q模拟氰化渣>q硅酸盐矿>q石英;石英对氰几乎不产生吸附,黄铁矿、硅酸盐矿物混合物和模拟氰化渣对氰的饱和吸附量分别约为13.89、1.09和6.89 mg/g。开发了一种数学模型用来评估石英、硅酸盐矿物混合物和黄铁矿含量对氰化渣吸附氰总量的影响。红外分析表明,CN-吸附在矿物表面,改变了氧化产物,生成了新的物质,促进了矿物对CN-的吸附。
中图分类号:
涂玉波, 韩培伟, 魏连启, 仉小猛, 杜英超, 王永良, 叶树峰. 氰化渣典型矿物对氰的吸附[J]. 化工学报, 2019, 70(7): 2684-2690.
Yubo TU, Peiwei HAN, Lianqi WEI, Xiaomeng ZHANG, Yingchao DU, Yongliang WANG, Shufeng YE. Adsorption of cyanide by typical minerals of cyanide slag[J]. CIESC Journal, 2019, 70(7): 2684-2690.
Mineral | S | Fe | As | SiO2 |
---|---|---|---|---|
pyrite | 49.83 | 45.62 | 0.02 | 1.67 |
表1 矿物化学成分(一)
Table 1 Chemical component of minerals(1)/%(mass)
Mineral | S | Fe | As | SiO2 |
---|---|---|---|---|
pyrite | 49.83 | 45.62 | 0.02 | 1.67 |
Mineral | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | CaO | Na2O |
---|---|---|---|---|---|---|---|
quartz | 97.45 | 0.92 | 0.61 | 0.06 | 0.02 | 0.05 | 0.03 |
muscovite | 43.89 | 35.42 | 6.78 | 2.35 | 8.07 | 1.47 | 0.66 |
feldspar | 66.31 | 18.02 | 1.15 | 0.43 | 10.84 | 1.02 | 2.05 |
montmorillonite | 71.88 | 13.82 | 1.08 | 3.43 | 0.63 | 4.57 | 1.25 |
表2 矿物化学成分(二)
Table 2 Chemical component of minerals(2)/%(mass)
Mineral | SiO2 | Al2O3 | Fe2O3 | MgO | K2O | CaO | Na2O |
---|---|---|---|---|---|---|---|
quartz | 97.45 | 0.92 | 0.61 | 0.06 | 0.02 | 0.05 | 0.03 |
muscovite | 43.89 | 35.42 | 6.78 | 2.35 | 8.07 | 1.47 | 0.66 |
feldspar | 66.31 | 18.02 | 1.15 | 0.43 | 10.84 | 1.02 | 2.05 |
montmorillonite | 71.88 | 13.82 | 1.08 | 3.43 | 0.63 | 4.57 | 1.25 |
Mineral | Freundlich adsorption equation | Langmuir adsorption equation | ||||||
---|---|---|---|---|---|---|---|---|
kF | 1/n | R2 | qm | kL | R2 | |||
pyrite | 0.0218 | 0.8863 | 0.952 | 13.89 | 0.0011 | 0.996 | ||
silicate mixture | 0.0527 | 0.4702 | 0.851 | 1.09 | 0.0141 | 0.999 | ||
synthetic cyanide tailing | 0.0507 | 0.605 | 0.964 | 6.89 | 0.0015 | 0.995 |
表3 不同矿物对氰的吸附特征
Table 3 Adsorption characteristics of different minerals for CN-
Mineral | Freundlich adsorption equation | Langmuir adsorption equation | ||||||
---|---|---|---|---|---|---|---|---|
kF | 1/n | R2 | qm | kL | R2 | |||
pyrite | 0.0218 | 0.8863 | 0.952 | 13.89 | 0.0011 | 0.996 | ||
silicate mixture | 0.0527 | 0.4702 | 0.851 | 1.09 | 0.0141 | 0.999 | ||
synthetic cyanide tailing | 0.0507 | 0.605 | 0.964 | 6.89 | 0.0015 | 0.995 |
No. | Composition/%(mass) | qm(SC)/(mg/g) | ||
---|---|---|---|---|
Pyrite | Silicate mixture | Quartz | ||
1 | 0 | 0 | 100 | 0.02 |
2 | 0 | 100 | 0 | 1.09 |
3 | 5 | 40 | 55 | 3.67 |
4 | 10 | 30 | 60 | 4.40 |
5 | 15 | 25 | 60 | 6.12 |
6 | 15 | 20 | 65 | 5.80 |
7 | 20 | 30 | 50 | 6.39 |
8 | 25 | 25 | 50 | 7.49 |
9 | 30 | 20 | 50 | 8.46 |
10 | 100 | 0 | 0 | 13.89 |
表4 不同组成的氰化渣相似尾矿对CN-的吸附
Table 4 CN- adsorption capacity of cyanide tailing with different compositions
No. | Composition/%(mass) | qm(SC)/(mg/g) | ||
---|---|---|---|---|
Pyrite | Silicate mixture | Quartz | ||
1 | 0 | 0 | 100 | 0.02 |
2 | 0 | 100 | 0 | 1.09 |
3 | 5 | 40 | 55 | 3.67 |
4 | 10 | 30 | 60 | 4.40 |
5 | 15 | 25 | 60 | 6.12 |
6 | 15 | 20 | 65 | 5.80 |
7 | 20 | 30 | 50 | 6.39 |
8 | 25 | 25 | 50 | 7.49 |
9 | 30 | 20 | 50 | 8.46 |
10 | 100 | 0 | 0 | 13.89 |
No. | Composition/%(mass) | qm(SC)/(mg/g) | |||
---|---|---|---|---|---|
Pyrite | Silicate mixture | Quartz | Calculated value | Measured value | |
11 | 10 | 20 | 70 | 4.62 | 4.59 |
12 | 30 | 30 | 40 | 7.54 | 7.92 |
13 | 50 | 10 | 30 | 10.78 | 11.03 |
表5 数学模型的验证
Table 5 Verification of mathematical model
No. | Composition/%(mass) | qm(SC)/(mg/g) | |||
---|---|---|---|---|---|
Pyrite | Silicate mixture | Quartz | Calculated value | Measured value | |
11 | 10 | 20 | 70 | 4.62 | 4.59 |
12 | 30 | 30 | 40 | 7.54 | 7.92 |
13 | 50 | 10 | 30 | 10.78 | 11.03 |
1 | 杨剧文, 王二军.黄金选冶技术进展[J]. 矿产保护与利用, 2007, (4): 34-38. |
YangJ W, WangE J. Progress of mineral processing and metallurgy for gold ores[J]. Conservation and Utilization of Mineral Resources, 2007, (4): 34-38. | |
2 | AdamsM D. Advances in Gold Ore Processing[M]. Amsterdam: Elsevier B.V., 2005: 479-482. |
3 | HabashiF. One hundred years of cyanidation[J]. Cim. Bulletin., 1987, 80(905): 108-114. |
4 | TuY B, HanP W, WeiL Q, et al. Removal of cyanide adsorbed on pyrite by H2O2 oxidation under alkaline conditions[J]. Journal of Environmental Sciences, 2019, 78: 287-292. |
5 | 陈昌明. 皖南地区大型韧性剪切带及其与金成矿作用关系研究[D]. 武汉: 中国地质大学, 2016. |
ChenC M. Study on the large ductile shear zone in Southern Anhui and its relationship with gold mineralization[D]. Wuhan: China University of Geosciences, 2016. | |
6 | TekoumL. 乍得共和国西南部Mayo Kebbi地区金镍矿床成矿作用研究[D]. 长春: 吉林大学, 2014. |
TekoumL. Study on metallogeny of gold and nickel deposit in Mayo Kebbi, Southwestern Chad[D]. Changchun: Jilin University, 2014. | |
7 | 王守敬. 新疆天格尔金矿带含金剪切带型金矿成矿作用研究[D]. 西安: 西北大学, 2008. |
WangS J. The mineralization of gold deposits related to shear zone in Tianger gold deposits belt, Xinjiang[D]. Xi an: Northwest University, 2008. | |
8 | ZhouC D, ChinD T. Copper recovery and cyanide destruction with a plating barrel cathode and a packed- bed anode[J]. Plating and Surface Finishing, 1993, 80(6): 69-77. |
9 | DutraA J B, RochaG P, PomboF R. Copper recovery and cyanide oxidation by electrowinning from a spent copper-cyanide electroplating electrolyte[J]. Journal of Hazardous Materials, 2008, 152(2): 648-655. |
10 | Felix-NavarroR M, LinS W, Castro-CecenaA B, et al. Cyanide destruction and simultaneous recovery of copper with an electrochemical reactor[J]. Journal of the Electrochemical Society, 2003.150(8): 149-154. |
11 | YngardR A, SharmaV K, FilipJ, et al. Ferrate(Ⅵ) oxidation of weak-acid dissociable cyanides[J]. Environmental Science and Technology, 2008, 42(8): 3005-3010. |
12 | AkcilA, MudderT. Microbial destruction of cyanide wastes in gold mining: process review[J]. Biotechnology Letters, 2003, 25(6): 445-450. |
13 | WhiteD M, LilonT A, WoolardC. Biological treatment of cyanide containing wastewater[J]. Water Research, 2000, 34(7): 2105-2109. |
14 | SirianuntapiboonS, ChairattanawanK, RarunroengM. Biological removal of cyanide compounds from electroplating wastewater (EPWW) by sequencing batch reactor (SBR) system[J]. Journal of Hazardous Materials, 2008, 154: 526-534. |
15 | KogerS, BockhornH, MackieJ C. NOx formation from ammonia, hydrogen cyanide, pyrrole, and caprolactam under incinerator conditions[C]//Proceedings of the Combustion Institute -Thirtieth International Symposium on Combustion, 2005: 1201-1209. |
16 | 李社红, 郑宝山, 朱建明, 等. 金矿尾矿渣及其污染土壤中氰化物的分布及自然降解[J]. 环境科学, 2001, 22(3): 126-128. |
LiS H, ZhengB S, ZhuJ M, et al. The distribution and natural degradation of cyanide in goldmine waste-solid and polluted soil[J]. Environmental Science, 2001, 22(3): 126-128. | |
17 | 王秀芹. 氰化物在不同环境中的自然降解规律研究[J]. 湖北第二师范学院学报, 2014, 31(8): 59-61. |
WangX Q. Study on the natural degradation regularity of cyanide in different environments[J]. Journal of Hubei University of Education, 2014, 31(8): 59-61. | |
18 | SimovicL, SnodgrassW J, MurphyK L, et al. Development of a model to describe the natural degradation of cyanide in gold mill effluents[C]//Cyanide and the Environment Proceedings of a Conference. Tucson Ariz, 1984. |
19 | CastriK F, MeDevittD A, CastricP A. Influence of aeration on hydrogen cyanide biosynthesis by Pseudomonas aeruginosa[J]. Current Microbiology, 1981, 5(4): 223-226. |
20 | 张朝晖, 刘佰龙, 巨建涛, 等. 氰化提金尾渣矿物特性与热性质研究[J]. 化工生产与技术, 2010, 17(6): 20-24. |
ZhangC H, LiuB L, JuJ T, et al. Mineralogical characteristic and thermal properties on cyaniding extraction tailings of gold[J]. Chemical Production and Technology, 2010, 17(6): 20-24. | |
21 | 赵军, 张兴凯, 王云海. 硫铁矿的比表面积、孔体积及其对硫铁矿吸附能力的影响研究[J]. 中国安全生产科学技术, 2008, (4): 119-121. |
ZhaoJ, ZhangX K, WangY H. Influence of specific surface area and pore volume of iron pyrites on adsorption capacity[J]. Journal of Safety Science and Technology, 2008, (4): 119-121. | |
22 | 李培铮.黄金生产加工技术大全[M].长沙: 中南工业大学出版社, 1995: 304-307. |
LiP Z. Encyclopedia of Gold Production and Processing Technology [M]. Changsha: Central South University of Technology Press, 1995: 304-307. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[4] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[5] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[6] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[7] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[8] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[9] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
[10] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[11] | 黄磊, 孔令学, 白进, 李怀柱, 郭振兴, 白宗庆, 李平, 李文. 油页岩添加对准东高钠煤灰熔融行为影响的研究[J]. 化工学报, 2023, 74(5): 2123-2135. |
[12] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[13] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[14] | 肖川宝, 李林洋, 刘武锋, 钟年丙, 解泉华, 钟登杰, 常海星. 光催化与离子交换吸附耦合有效去除2,4,6-三氯苯酚[J]. 化工学报, 2023, 74(4): 1587-1597. |
[15] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 148
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 434
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||