化工学报 ›› 2019, Vol. 70 ›› Issue (9): 3213-3227.DOI: 10.11949/0438-1157.20190328
收稿日期:
2019-04-01
修回日期:
2019-05-17
出版日期:
2019-09-05
发布日期:
2019-09-05
通讯作者:
方柏山
作者简介:
宋易航(1993—),男,硕士研究生,基金资助:
Yihang SONG1(),Chuhao WANG1,Baishan FANG1,2,3()
Received:
2019-04-01
Revised:
2019-05-17
Online:
2019-09-05
Published:
2019-09-05
Contact:
Baishan FANG
摘要:
胶原蛋白广泛存在于有机体生命各组织,是构成生命体的基础性蛋白之一。胶原蛋白结构相对复杂、稳定性良好、不易受到普通蛋白酶的降解破坏。而基质金属蛋白酶和微生物胶原酶是为数不多能原位降解胶原蛋白的两类胶原酶,能够在生理环境下保持较高酶活力从而发挥作用,因此受到研究者的广泛关注。首先简要介绍胶原蛋白及其水解酶,其次重点介绍基质金属蛋白酶和微生物胶原酶的发掘历程和水解机理,然后综述这两类酶的最新研究进展及其在医疗诊治、食品加工、环境保护及组织工程等多方面的应用,最后总结胶原酶及胶原蛋白研究现状、研究难点和未来研究方向。
中图分类号:
宋易航, 王楚浩, 方柏山. 胶原酶研究进展与应用[J]. 化工学报, 2019, 70(9): 3213-3227.
Yihang SONG, Chuhao WANG, Baishan FANG. Progress and application of collagenase research[J]. CIESC Journal, 2019, 70(9): 3213-3227.
1 | Shoulders M D , Raines R T . Collagen structure and stability[J]. Annual Review of Biochemistry, 2009, 78(1): 929-958. |
2 | Veit G , Kobbe B , Keene D R , et al . Collagen ⅩⅩⅧ, a novel von Willebrand factor a domain-containing protein with many imperfections in the collagenous domain[J]. Journal of Biological Chemistry, 2006, 281(6): 3494-3504. |
3 | Pauling L , Corey R B . The structure of fibrous proteins of the collagen-gelatin group[J]. Proceedings of the National Academy of Sciences, 1951, 37(5): 272-281. |
4 | Rich A , Crick F H C . The structure of collagen[J]. Nature, 1955, 176: 915-916. |
5 | Ramshaw J A M , Shah N K , Brodsky B . Gly-XY tripeptide frequencies in collagen: a context for host-guest triple-helical peptides[J]. Journal of Structural Biology, 1998, 122(1/2): 86-91. |
6 | Boryskina O P , Bolbukh T V , Semenov M A , et al . Energies of peptide–peptide and peptide-water hydrogen bonds in collagen: evidences from infrared spectroscopy quartz piezogravimetry and differential scanning calorimetry[J]. Journal of Molecular Structure, 2007, 827(1): 1-10. |
7 | Hyde T J , Bryan M A , Brodsky B , et al . Sequence dependence of renucleation after a Gly mutation in model collagen peptides[J]. Journal of Biological Chemistry, 2006, 281(48): 36937. |
8 | Khoshnoodi J , Cartailler J P , Alvares K , et al . Molecular recognition in the assembly of collagens: terminal noncollagenous domains are key recognition modules in the formation of triple helical protomers[J]. Journal of Biological Chemistry, 2006, 25(50): 38117-38121. |
9 | Raghunath M , Bruckner P , Steinmann B . Delayed triple helix formation of mutant collagen from patients with osteogenesis imperfecta[J]. Journal of Molecular Biology, 1994, 236(3): 940. |
10 | Cram D J . The design of molecular hosts, guests, and their complexes[J]. Journal of Inclusion Phenomena, 1988, 27(8): 1009-1020. |
11 | Berg R A , Prockop D J . The thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen[J]. Biochemical and Biophysical Research Communications, 1973, 52(1): 115-120. |
12 | Kim C A , Berg J M . Thermodynamic β-sheet propensities measured using a zinc-finger host peptide[J]. Nature, 1993, 362(6417): 267-270. |
13 | Minor D L , Kim P S . Measurement of the β-sheet-forming propensities of amino acids[J]. Nature, 1994, 367(6464): 660-663. |
14 | Buehler M J . Nature designs tough collagen: explaining the nanostructure of collagen fibrils [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(33): 12285-12290. |
15 | Chung L , Dinakarpandian D , Yoshida N , et al . Collagenase unwinds triple-helical collagen prior to peptide bond hydrolysis[J]. The EMBO Journal, 2004, 23(15): 3020-3030. |
16 | Zhao W , Byrne M H , Boyce B F , et al . Bone resorption induced by parathyroid hormone is strikingly diminished in collagenase-resistant mutant mice[J]. Journal of Clinical Investigation, 1999, 103(4): 517-524. |
17 | Gross J , Lapiere C M . Collagenolytic activity in amphibian tissues: a tissue culture assay[J]. Proceedings of the National Academy of Sciences of the United States of America, 1962, 48(6): 1014-1022. |
18 | Brinckerhoff C E , Matrisian L M . Matrix metalloproteinases: a tail of a frog that became a prince[J]. Nature Reviews Molecular Cell Biology, 2002, 3(3): 207-214. |
19 | Visse R , Nagase H . Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry[J]. Circulation Research, 2003, 92(8): 827-839. |
20 | Peng W , Yan J , Wan Y , et al . Matrix metalloproteinases: a review of their structure and role in systemic sclerosis[J]. Journal of Clinical Immunology, 2012, 32(6): 1409-1414. |
21 | van Wart H E , Birkedal-Hansen H . The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family[J]. Proceedings of the National Academy of Sciences, 1990, 87(14): 5578-5582. |
22 | Itoh Y , Takamura A , Ito N , et al . Homophilic complex formation of MT1‐MMP facilitates proMMP‐2 activation on the cell surface and promotes tumor cell invasion[J]. The EMBO Journal, 2001, 20(17): 4782-4793. |
23 | Gomis-Rüth F X , Maskos K , Betz M , et al . Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1[J]. Nature, 1997, 389(6646): 77. |
24 | Goldberg G I , Strongin A , Collier I E , et al . Interaction of 92-kDa type Ⅳ collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin[J]. J.Biol. Chem., 1992, 267(7): 4583-4591. |
25 | Fields G B , Prockop D J . Perspectives on the synthesis and application of triple‐helical, collagen‐model peptides[J]. Peptide Science, 1996, 40(4): 345-357. |
26 | Bertini I , Calderone V , Fragai M , et al . Snapshots of the reaction mechanism of matrix metalloproteinases[J]. Angewandte Chemie, 2006, 45(47): 7952-7955. |
27 | Iyer S , Visse R , Nagase H , et al . Crystal structure of an active form of human MMP-1[J]. Journal of Molecular Biology, 2006, 362(1): 78-88. |
28 | Manka S W , Carafoli F , Visse R , et al . Structural insights into triple-helical collagen cleavage by matrix metalloproteinase 1[J]. Proceedings of the National Academy of Sciences, 2012, 109(31): 12461-12466. |
29 | Bertini I , Fragai M , Luchinat C , et al . Structural basis for matrix metalloproteinase 1-catalyzed collagenolysis[J]. Journal of the American Chemical Society, 2012, 134(4): 2100-2110. |
30 | Maclennan J D , Mandl I , Howes E L . Bacterial digestion of collagen[J]. Journal of Clinical Investigation, 1954, 32(12): 1317-1322. |
31 | Shi L , Carson D . Collagenase Santyl ointment: a selective agent for wound debridement[J]. Journal of Wound Ostomy & Continence Nursing, 2009, 36(6S): S12-S16. |
32 | Allen F E , Larick D K . Tenderization of beef with bacterial collagenase[J]. Meat Science, 1986, 18(3): 201-214. |
33 | Duarte A S , Correia A , Esteves A C . Bacterial collagenases—a review[J]. Critical Reviews in Microbiology, 2016, 42(1): 106-126. |
34 | Weinberg M , Randin A . Proprietes physicochimiques du ferment fibrolytique d’origine microbienne[J]. Compt. Rend. Soc. Biol., 1932, 110: 352. |
35 | Matsushita O , Koide T , Kobayashi R , et al . Substrate recognition by the collagen-binding domain of Clostridium histolyticum Class I collagenase[J]. Journal of Biological Chemistry, 2001, 276(12): 8761-8770. |
36 | Matsushita O , Jung C M , Katayama S , et al . Gene duplication and multiplicity of collagenases in Clostridium histolyticum [J]. Journal of Bacteriology, 1999, 181(3): 923-933. |
37 | Eckhard U , Brandstetter H . Polycystic kidney disease-like domains of clostridial collagenases and their role in collagen recruitment[J]. Biological Chemistry, 2011, 392(11): 1039-1045. |
38 | Vaitkevicius K , Rompikuntal P K , Lindmark B , et al . The metalloprotease PrtV from Vibrio cholerae [J]. FEBS Journal, 2008, 275(12): 3167-3177. |
39 | Eckhard U , Schönauer E , Nüss D , et al . Structure of collagenase G reveals a chew-and-digest mechanism of bacterial collagenolysis[J]. Nature Structural & Molecular Biology, 2011, 18(10): 1109-1114. |
40 | Wilson J J , Matsushita O , Okabe A , et al . A bacterial collagen‐binding domain with novel calcium‐binding motif controls domain orientation[J]. The EMBO Journal, 2003, 22(8): 1743-1752. |
41 | Popoff M R , Bouvet P . Clostridial toxins[J]. Future Microbiology, 2009, 4(8): 1021-1064. |
42 | Pruteanu M , Hyland N P , Clarke D J , et al . Degradation of the extracellular matrix components by bacterial-derived metalloproteases: implications for inflammatory bowel diseases[J]. Inflammatory Bowel Diseases, 2011, 17(5): 1189-1200. |
43 | Choi J S , Ha Y M , Joo C U , et al . Inhibition of oral pathogens and collagenase activity by seaweed extracts[J]. Journal of Environmental Biology, 2012, 33(1): 115. |
44 | Maeda H , Yamamoto T . Pathogenic mechanisms induced by microbial proteases in microbial infections[J]. Biological Chemistry Hoppe-Seyler, 1996, 377(4): 217. |
45 | Fratzl P . Collagen: Structure and Mechanics, an Introduction[M]. US: Springer, 2008: 1-13. |
46 | Martin-Ferrero M . Ten-year long-term results of total joint arthroplasties with ARPE(R) implant in the treatment of trapeziometacarpal osteoarthritis[J]. Journal of Hand Surgery (European Volume), 2014, 39(8): 826-832. |
47 | Hupez A , Detrembleur C , van Innis F , et al . Comparative study of collagenase injection versus fasciectomy in Dupuytren’s contracture: a 1-year follow-up[J]. Louvain. Med., 2017, 136(4): 231-237. |
48 | Badalamente M A , Hurst L C . Development of collagenase treatment for dupuytren disease[J]. Hand Clinics, 2018, 34(3): 345-349. |
49 | Villegas M R , Baeza A , Usategui A , et al . Collagenase nanocapsules: an approach to fibrosis treatment[J]. Acta Biomaterialia, 2018, 74: 430-438. |
50 | Zhang D , Zhang Y , Wang Z , et al . Target radiofrequency combined with collagenase chemonucleolysis in the treatment of lumbar intervertebral disc herniation[J]. International Journal of Clinical and Experimental Medicine, 2015, 8(1): 526. |
51 | Huett E , Bartley W , Morris D , et al . Collagenase for wound debridement in the neonatal intensive care unit: a retrospective case series[J]. Pediatric Dermatology, 2017, 34(3): 277-281. |
52 | Eikenes L , Tari M , Tufto I , et al . Hyaluronidase induces a transcapillary pressure gradient and improves the distribution and uptake of liposomal doxorubicin (Caelyx™) in human osteosarcoma xenografts[J]. British Journal of Cancer, 2005, 93(1): 81-88. |
53 | Eikenes L , Tufto I , Schnell E A , et al . Effect of collagenase and hyaluronidase on free and anomalous diffusion in multicellular spheroids and xenografts[J]. Anticancer Research, 2010, 30(2): 359-368. |
54 | Gómez-Guillén M C , Ihl M , Bifani V , et al . Edible films made from tuna-fish gelatin with antioxidant extracts of two different murta ecotypes leaves (Ugni molinae Turcz)[J]. Food HydroColloids, 2007, 21(7): 1133-1143. |
55 | Karim A A . Fish gelatin: properties, challenge and prospects as an alternative to mammalian gelatins[J]. Food HydroColloids, 2009, 23(3): 563-576. |
56 | Rawdkuen S , Saiut S , Benjakul S . Properties of gelatin films from giant catfish skin and bovine bone: a comparative study[J]. European Food Research & Technology, 2010, 231(6): 907-916. |
57 | Zhang Y , Kouguchi T , Shimizu K , et al . Chicken collagen hydrolysate reduces proinflammatory cytokine production in C57BL/6.KOR-ApoEshl mice[J]. Journal of Nutritional Science & Vitaminology, 2010, 56(3): 208. |
58 | Saito M , Kiyose C , Higuchi T , et al . Effect of collagen hydrolysates from salmon and trout skins on the lipid profile in rats[J]. Journal of Agricultural & Food Chemistry, 2009, 57(21): 10477. |
59 | Hu H , Li B , Xue Z , et al . The effect of pacific cod (Gadus macrocephalus) skin gelatin polypeptides on UV radiation-induced skin photoaging in ICR mice[J]. Food Chemistry, 2012, 115(3): 945-950. |
60 | Giménez B , Alemán A , Montero P , et al . Antioxidant and functional properties of gelatin hydrolysates obtained from skin of sole and squid [J]. Food Chemistry, 2009, 114(3): 976-983. |
61 | Patrzykat A , Douglas S E . Antimicrobial peptides: cooperative approaches to protection[J]. Protein and Peptide Letters, 2005, 12(1): 19-25. |
62 | Ranathunga S , Rajapakse N , Kim S , et al . Purification and characterization of antioxidative peptide derived from muscle of conger eel (Conger myriaster)[J]. European Food Research and Technology, 2006: 310-315. |
63 | Ichimura T , Yamanaka A , Otsuka T , et al . Antihypertensive effect of enzymatic hydrolysate of collagen and Gly-Pro in spontaneously hypertensive rats[J]. Journal of the Agricultural Chemical Society of Japan, 2009, 73(10): 2317-2319. |
64 | Fu Y , Young J F , Løkke M M , et al . Revalorisation of bovine collagen as a potential precursor of angiotensin I-converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions[J]. Journal of Functional Foods, 2016, 24: 196-206. |
65 | Lin L , Li B F . Radical scavenging properties of protein hydrolysates from jumbo flying squid (Dosidicus eschrichitii Steenstrup) skin gelatin[J]. Journal of the Science of Food & Agriculture, 2010, 86(14): 2290-2295. |
66 | Cheng F Y , Wan T C , Liu Y T , et al . Determination of angiotensin-I converting enzyme inhibitory peptides in chicken leg bone protein hydrolysate with alcalase[J]. Animal Science Journal, 2010, 80(1): 91-97. |
67 | Cheng F Y , Liu Y T , Wan T C , et al . The development of angiotensin I-converting enzyme inhibitor derived from chicken bone protein[J]. Animal Science Journal, 2010, 79(1): 122-128. |
68 | Gómez-Guillén M C , Giménez B , López-Caballero M E , et al . Functional and bioactive properties of collagen and gelatin from alternative sources: a review[J]. Food HydroColloids, 2011, 25(8): 1813-1827. |
69 | Fernandes P . Enzymes in food processing: a condensed overview on strategies for better biocatalysts[J]. Enzyme Research, 2010, 2010: 1-19. |
70 | Kemp C M , Sensky P L , Bardsley R G , et al . Tenderness—an enzymatic view[J]. Meat Science, 2010, 84(2): 248-256. |
71 | Zhao G Y , Zhou M Y , Zhao H L , et al . Tenderization effect of cold-adapted collagenolytic protease MCP-01 on beef meat at low temperature and its mechanism[J]. Food Chemistry, 2012, 134(4): 1738-1744. |
72 | Pal G K , Suresh P V . Microbial collagenases: challenges and prospects in production and potential applications in food and nutrition[J]. RSC Advances, 2016, 6(40): 33763-33780. |
73 | Plaza M , Cifuentes A , Ibáñez E . In the search of new functional food ingredients from algae[J]. Trends in Food Science & Technology, 2008, 19(1): 31-39. |
74 | Pangestuti R , Kim S K . Bioactive materials derived from seafood and seafood processing by-products[M]// Functional Foods and Dietary Supplements: Processing Effects and Health Benefits. New Jersey: John Wiley & Sons, Ltd., 2014: 139-158. |
75 | Wang B , Wang Y M , Chi C F , et al . Isolation and characterization of collagen and antioxidant collagen peptides from scales of croceine croaker (Pseudosciaena crocea)[J]. Marine Drugs, 2013, 11(11): 4641-4661. |
76 | Guo L , Harnedy P A , O’Keeffe M B , et al . Fractionation and identification of Alaska pollock skin collagen-derived mineral chelating peptides[J]. Food Chemistry, 2015, 173: 536-542. |
77 | Zhuang Y , Sun L , Li B . Production of the angiotensin-I-converting enzyme (ACE)-inhibitory peptide from hydrolysates of jellyfish (Rhopilema esculentum) collagen[J]. Food and Bioprocess Technology, 2012, 5(5): 1622-1629. |
78 | Gu Y , Liang Y , Bai J , et al . Spent hen-derived ACE inhibitory peptide IWHHT shows antioxidative and anti-inflammatory activities in endothelial cells[J]. Journal of Functional Foods, 2019, 53: 85-92. |
79 | O’Keeffe M B , Norris R , Alashi M A , et al . Peptide identification in a porcine gelatin prolyl endoproteinase hydrolysate with angiotensin converting enzyme (ACE) inhibitory and hypotensive activity[J]. Journal of Functional Foods, 2017, 34: 77-88. |
80 | Felician F F , Xia C , Qi W , et al . Collagen from marine biological sources and medical applications[J]. Chemistry & Biodiversity, 2018, 15(5): e1700557. |
81 | Saran S , Mahajan R V , Kaushik R , et al . Enzyme mediated beam house operations of leather industry: a needed step towards greener technology[J]. Journal of Cleaner Production, 2013, 54(9): 315-322. |
82 | Khandelwal H B , More S V , Kalal K M , et al . Eco-friendly enzymatic dehairing of skins and hides by C. brefeldianus protease[J]. Clean Technologies and Environmental Policy, 2015, 17(2): 393-405. |
83 | Thanikaivelan P , Rao J R , Nair B U , et al . Recent trends in leather making: processes, problems, and pathways[J]. Critical Reviews in Environmental Science and Technology, 2005, 35(1): 37-79. |
84 | Song J , Tao W , Chen W . Kinetics of enzymatic unhairing by protease in leather industry[J]. Journal of Cleaner Production, 2011, 19(4): 325-331. |
85 | Smail A M S , Housseiny M M , Abo-Elmagd H I , et al . Novel keratinase from Trichoderma harzianum MH-20 exhibiting remarkable dehairing capabilities[J]. International Biodeterioration & Biodegradation, 2012, 70: 14-19. |
86 | 靳鸿蔚 .胶原酶产生菌的筛选、胶原酶的纯化及其酶学性质的研究[D].泉州: 华侨大学, 2007. |
Jin H W . Purification and partial characterization of a collagenase from a newly isolated strain of Bacillus megaterium [D]. Quanzhou: Huaqiao University, 2007. | |
87 | Corso C R , Almeida E J R , Santos G C , et al . Bioremediation of direct dyes in simulated textile effluents by a paramorphogenic form of Aspergillus oryzae [J]. Water Science and Technology, 2012, 65(8): 1490-1495. |
88 | Kanth S V , Venba R , Madhan B , et al . Studies on the influence of bacterial collagenase in leather dyeing[J]. Dyes and Pigments, 2008, 76(2): 338-347. |
89 | 王耿 .碱性脱毛蛋白酶菌株的选育及酶的提纯研究[D]. 泉州: 华侨大学, 2007. |
Wang G . Breeding of a strain producing alkaline protease for dehairing and studies on the purification of the enzyme[D]. Quanzhou: Huaqiao University, 2007. | |
90 | Duarte A S , Rosa N , Duarte E P , et al . Cardosins: a new and efficient plant enzymatic tool to dissociate neuronal cells for the establishment of cell cultures[J]. Biotechnology & Bioengineering, 2010, 97(4): 991-996. |
91 | Isyar M , Yilmaz I , Sirin D Y , et al . A practical way to prepare primer human chondrocyte culture[J]. Journal of Orthopaedics, 2016, 13(3): 162-167. |
92 | Olsen J V , Ong S E , Mann M . Trypsin cleaves exclusively C-terminal to arginine and lysine residues[J]. Molecular & Cellular Proteomics, 2004, 3(6): 608-614. |
93 | Song Y , Tian K , Mi W , et al . Combinatorial enzymatic digestion with thermolysin and collagenase type Ⅰ improved the isolation and culture effects of hair cell progenitors from rat cochleae[J]. In Vitro Cellular & Developmental Biology-Animal, 2016, 52(5): 537-544. |
94 | Kin T , Johnson P R V , Shapiro A M J , et al . Factors influencing the collagenase digestion phase of human islet isolation[J]. Transplantation, 2007, 83(1): 7-12. |
95 | Loganathan G , Subhashree V , Narayanan S , et al . Improved recovery of human islets from young donor pancreases utilizing increased protease dose to collagenase for digesting peri‐islet extracellular matrix[J]. American Journal of Transplantation, 2019, 19: 831-843. |
96 | Berková Z , Saudek F , Leontovyč I , et al . Testing of a new collagenase blend for pancreatic islet isolation produced by Clostridium histolyticum [J]. Advances in Bioscience and Biotechnology, 2018, 9(1): 26. |
[1] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[2] | 陈雅鑫, 袁航, 刘冠章, 毛磊, 杨纯, 张瑞芳, 张光亚. 蛋白质纳米笼介导的酶自固定化研究进展[J]. 化工学报, 2023, 74(7): 2773-2782. |
[3] | 汤晓玲, 王嘉瑞, 朱玄烨, 郑仁朝. 基于Pickering乳液的卤醇脱卤酶催化合成手性环氧氯丙烷[J]. 化工学报, 2023, 74(7): 2926-2934. |
[4] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[5] | 侯文起, 孙彦, 董晓燕. 碱化修饰甲状腺素运载蛋白显著增强对淀粉样β蛋白聚集的抑制作用[J]. 化工学报, 2023, 74(5): 2100-2110. |
[6] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[7] | 贾露凡, 王艺颖, 董钰漫, 李沁园, 谢鑫, 苑昊, 孟涛. 微流控双水相贴壁液滴流动强化酶促反应研究[J]. 化工学报, 2023, 74(3): 1239-1246. |
[8] | 刘瑞琪, 周栖桐, 张悦, 贺莹, 高静, 马丽. 基于金纳米颗粒修饰二氧化硅纳米花的生物传感器构建及应用[J]. 化工学报, 2023, 74(3): 1247-1259. |
[9] | 苏伟怡, 丁佳慧, 李春利, 王洪海, 姜艳军. 酶促反应结晶研究进展[J]. 化工学报, 2023, 74(2): 617-629. |
[10] | 胡阳, 孙彦. 酶分子的自驱动及其介导的微纳马达[J]. 化工学报, 2023, 74(1): 116-132. |
[11] | 谭卓涛, 齐思雨, 许梦蛟, 戴杰, 朱晨杰, 应汉杰. 辅酶自循环的氧化还原级联体系在生物催化过程中的应用:机遇与挑战[J]. 化工学报, 2023, 74(1): 45-59. |
[12] | 安绍杰, 许洪峰, 李思, 许远航, 李佳锡. 利用分子机器的组装与分解构建pH敏感性谷胱甘肽过氧化物人工酶[J]. 化工学报, 2022, 73(8): 3669-3678. |
[13] | 张昕哲, 孙文涛, 吕波, 李春. 植物天然产物氧化与微生物制造[J]. 化工学报, 2022, 73(7): 2790-2805. |
[14] | 黄丽菁, 黄继娇, 李鹏辉, 刘芷诺, 蒋康杰, 吴文娟. 木质素羟丙基磺甲基化改性及其对纤维素酶水解的影响[J]. 化工学报, 2022, 73(7): 3232-3239. |
[15] | 孙甲琛, 孙文涛, 孙慧, 吕波, 李春. 甘草黄酮合酶Ⅱ催化甘草素特异性合成7,4′-二羟基黄酮[J]. 化工学报, 2022, 73(7): 3202-3211. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||