化工学报 ›› 2019, Vol. 70 ›› Issue (11): 4397-4409.DOI: 10.11949/0438-1157.20190445
收稿日期:
2019-04-28
修回日期:
2019-07-16
出版日期:
2019-11-05
发布日期:
2019-11-05
通讯作者:
滕阳,张锴
作者简介:
李晓航(1985—),男,博士研究生,基金资助:
Xiaohang LI1(),Honggang LIU2,Jianzhou LU2,Yang TENG1(
),Kai ZHANG1(
)
Received:
2019-04-28
Revised:
2019-07-16
Online:
2019-11-05
Published:
2019-11-05
Contact:
Yang TENG,Kai ZHANG
摘要:
在固定床吸附反应器内对两台300MW等级燃煤发电机组循环流化床锅炉和煤粉锅炉飞灰样品进行气相零价汞吸附实验,通过改变实验工况研究温度、入口汞浓度和入口气体流量对飞灰汞吸附能力的影响。采用颗粒内扩散模型、准一阶和准二阶动力学模型、耶洛维奇(Elovich)模型对实验数据分别进行拟合,从动力学的角度探讨两种锅炉飞灰对气相零价汞吸附的影响机制以及两种锅炉飞灰与气相零价汞之间吸附动力学行为差异。结果表明:相同工况下循环流化床锅炉飞灰汞吸附过程的穿透时间和平衡吸附量远大于煤粉锅炉飞灰。吸附温度为150℃时,两种锅炉飞灰对气相零价汞的平衡吸附量最大。由于外扩散阻力随气体入口流量的增加而减小,入口汞浓度的增加可提高传质推动力,飞灰对汞的吸附得以增强。动力学分析表明飞灰的零价汞吸附由外扩散、内扩散和表面化学吸附共同控制,其中表面化学吸附是该吸附过程中的控制步骤;准二阶动力学模型和Elovich动力学模型更适合于描述该吸附过程。相同实验条件下,循环流化床锅炉飞灰吸附过程拟合所得的颗粒内扩散系数、准一阶动力学常数和初始吸附速率均大于煤粉锅炉飞灰。
中图分类号:
李晓航, 刘红刚, 路建洲, 滕阳, 张锴. 煤粉炉和循环流化床锅炉飞灰吸附汞动力学及其吸附机制[J]. 化工学报, 2019, 70(11): 4397-4409.
Xiaohang LI, Honggang LIU, Jianzhou LU, Yang TENG, Kai ZHANG. Kinetics and mechanism of mercury adsorption on fly ashes from pulverized coal boiler and circulating fluidized bed boiler[J]. CIESC Journal, 2019, 70(11): 4397-4409.
编号 | CFB | PC | ||
---|---|---|---|---|
处理前 | 处理后 | 处理前 | 处理后 | |
1 | 2137 | 8.9 | 460.2 | 5.3 |
2 | 2193 | 20.1 | 393.1 | 3.4 |
3 | 2206 | 17.5 | 412.9 | 2.7 |
4 | 2133 | 9.6 | 399.4 | 6.5 |
5 | 1968 | 18.9 | 387.3 | 1.4 |
6 | 2105 | 16.3 | 435.6. | 2.2 |
7 | 2072 | 22.1 | 427.3 | 3.5 |
8 | 2217 | 16.4 | 477.2 | 1.8 |
9 | 2042 | 13.2 | 379.2 | 2.7 |
10 | 1989 | 6.1 | 433.5 | 4.4 |
标准偏差 | 87.9 | 5.3 | 33.6 | 1.6 |
平均值 | 2106.2 | 15.71 | 418.9 | 3.39 |
表1 热处理前后飞灰样品汞含量
Table 1 Mercury content in fly ash and heated fly ash/(ng/g)
编号 | CFB | PC | ||
---|---|---|---|---|
处理前 | 处理后 | 处理前 | 处理后 | |
1 | 2137 | 8.9 | 460.2 | 5.3 |
2 | 2193 | 20.1 | 393.1 | 3.4 |
3 | 2206 | 17.5 | 412.9 | 2.7 |
4 | 2133 | 9.6 | 399.4 | 6.5 |
5 | 1968 | 18.9 | 387.3 | 1.4 |
6 | 2105 | 16.3 | 435.6. | 2.2 |
7 | 2072 | 22.1 | 427.3 | 3.5 |
8 | 2217 | 16.4 | 477.2 | 1.8 |
9 | 2042 | 13.2 | 379.2 | 2.7 |
10 | 1989 | 6.1 | 433.5 | 4.4 |
标准偏差 | 87.9 | 5.3 | 33.6 | 1.6 |
平均值 | 2106.2 | 15.71 | 418.9 | 3.39 |
编号 | CFB boiler | PC boiler | ||
---|---|---|---|---|
处理前 | 处理后 | 处理前 | 处理后 | |
相对误差 | 0.27 | 0.1 | ||
1 | 5.32 | 4.98 | 3.22 | 3.13 |
2 | 5.5 | 5.04 | 3.1 | 2.89 |
3 | 5.43 | 5.02 | 3.01 | 2.97 |
4 | 5.17 | 5.21 | 2.97 | 2.93 |
5 | 5.29 | 5.11 | 3.13 | 3.05 |
平均值 | 5.34 | 5.07 | 3.09 | 2.99 |
表2 热处理前后样品的未燃尽碳含量
Table 2 Unburned carbon content in fly ash and heated fly ash/%
编号 | CFB boiler | PC boiler | ||
---|---|---|---|---|
处理前 | 处理后 | 处理前 | 处理后 | |
相对误差 | 0.27 | 0.1 | ||
1 | 5.32 | 4.98 | 3.22 | 3.13 |
2 | 5.5 | 5.04 | 3.1 | 2.89 |
3 | 5.43 | 5.02 | 3.01 | 2.97 |
4 | 5.17 | 5.21 | 2.97 | 2.93 |
5 | 5.29 | 5.11 | 3.13 | 3.05 |
平均值 | 5.34 | 5.07 | 3.09 | 2.99 |
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
k id | C | R 2 | k id | C | R 2 | |
50℃ | 0.01450 | 0.00445 | 0.98051 | 0.06957 | 0.0494 | 0.96174 |
100℃ | 0.01220 | 0.00833 | 0.92372 | 0.06311 | 0.06294 | 0.92594 |
150℃ | 0.01880 | 0.00447 | 0.97958 | 0.06977 | 0.05872 | 0.9664 |
200℃ | 0.01101 | 0.00659 | 0.94983 | 0.05376 | 0.03526 | 0.92102 |
50 μg/m3 | 0.01880 | 0.00447 | 0.97958 | 0.06977 | 0.05872 | 0.9664 |
100 μg/m3 | 0.03088 | 0.01016 | 0.97617 | 0.14434 | 0.10891 | 0.93375 |
150 μg/m3 | 0.04455 | 0.01984 | 0.97412 | 0.18998 | 0.22181 | 0.95036 |
150 ml/min | 0.01479 | 0.00609 | 0.93096 | 0.04744 | 0.04908 | 0.95269 |
200 ml/min | 0.01880 | 0.00447 | 0.97958 | 0.06977 | 0.05872 | 0.9664 |
250 ml/min | 0.02564 | 0.01626 | 0.92208 | 0.09387 | 0.04647 | 0.96227 |
表3 颗粒内扩散方程拟合得到的参数和相关系数
Table 3 Fitting parameters and R 2 of Weber and Morris kinetic model
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
k id | C | R 2 | k id | C | R 2 | |
50℃ | 0.01450 | 0.00445 | 0.98051 | 0.06957 | 0.0494 | 0.96174 |
100℃ | 0.01220 | 0.00833 | 0.92372 | 0.06311 | 0.06294 | 0.92594 |
150℃ | 0.01880 | 0.00447 | 0.97958 | 0.06977 | 0.05872 | 0.9664 |
200℃ | 0.01101 | 0.00659 | 0.94983 | 0.05376 | 0.03526 | 0.92102 |
50 μg/m3 | 0.01880 | 0.00447 | 0.97958 | 0.06977 | 0.05872 | 0.9664 |
100 μg/m3 | 0.03088 | 0.01016 | 0.97617 | 0.14434 | 0.10891 | 0.93375 |
150 μg/m3 | 0.04455 | 0.01984 | 0.97412 | 0.18998 | 0.22181 | 0.95036 |
150 ml/min | 0.01479 | 0.00609 | 0.93096 | 0.04744 | 0.04908 | 0.95269 |
200 ml/min | 0.01880 | 0.00447 | 0.97958 | 0.06977 | 0.05872 | 0.9664 |
250 ml/min | 0.02564 | 0.01626 | 0.92208 | 0.09387 | 0.04647 | 0.96227 |
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
q e | k 1 | R 2 | q e | k 1 | R 2 | |
50℃ | 0.05837 | 0.22833 | 0.98249 | 0.58472 | 0.05534 | 0.9915 |
100℃ | 0.0501 | 0.32144 | 0.99149 | 0.49164 | 0.07773 | 0.99682 |
150℃ | 0.07935 | 0.19366 | 0.98686 | 0.67385 | 0.04211 | 0.98949 |
200℃ | 0.03852 | 0.44212 | 0.97532 | 0.36692 | 0.09013 | 0.99924 |
50 μg/m3 | 0.07935 | 0.19366 | 0.98686 | 0.67385 | 0.04211 | 0.98949 |
100 μg/m3 | 0.13881 | 0.18116 | 0.98361 | 1.3921 | 0.04198 | 0.99895 |
150 μg/m3 | 0.21134 | 0.176 | 0.98027 | 1.98264 | 0.04002 | 0.9914 |
150 ml/min | 0.05392 | 0.33353 | 0.99671 | 0.44257 | 0.04971 | 0.99109 |
200 ml/min | 0.07935 | 0.19366 | 0.98686 | 0.67385 | 0.04211 | 0.98949 |
250 ml/min | 0.11767 | 0.23313 | 0.99683 | 0.94083 | 0.03428 | 0.99627 |
表4 准一阶动力学模型的参数和相关系数
Table 4 Fitting parameters and R 2 of pseudo-first order kinetic model
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
q e | k 1 | R 2 | q e | k 1 | R 2 | |
50℃ | 0.05837 | 0.22833 | 0.98249 | 0.58472 | 0.05534 | 0.9915 |
100℃ | 0.0501 | 0.32144 | 0.99149 | 0.49164 | 0.07773 | 0.99682 |
150℃ | 0.07935 | 0.19366 | 0.98686 | 0.67385 | 0.04211 | 0.98949 |
200℃ | 0.03852 | 0.44212 | 0.97532 | 0.36692 | 0.09013 | 0.99924 |
50 μg/m3 | 0.07935 | 0.19366 | 0.98686 | 0.67385 | 0.04211 | 0.98949 |
100 μg/m3 | 0.13881 | 0.18116 | 0.98361 | 1.3921 | 0.04198 | 0.99895 |
150 μg/m3 | 0.21134 | 0.176 | 0.98027 | 1.98264 | 0.04002 | 0.9914 |
150 ml/min | 0.05392 | 0.33353 | 0.99671 | 0.44257 | 0.04971 | 0.99109 |
200 ml/min | 0.07935 | 0.19366 | 0.98686 | 0.67385 | 0.04211 | 0.98949 |
250 ml/min | 0.11767 | 0.23313 | 0.99683 | 0.94083 | 0.03428 | 0.99627 |
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
k 2 q e 2 | k 2 | R 2 | k 2 q e 2 | k 2 | R 2 | |
50℃ | 0.016986 | 3.08933 | 0.99378 | 0.04159 | 0.07674 | 0.9986 |
100℃ | 0.021945 | 5.94426 | 0.99625 | 0.050562 | 0.13797 | 0.99796 |
150℃ | 0.019274 | 1.85765 | 0.99491 | 0.036524 | 0.05077 | 0.99829 |
200℃ | 0.023564 | 10.85572 | 0.99291 | 0.042458 | 0.20136 | 0.99323 |
50 μg/m3 | 0.019274 | 1.85765 | 0.99491 | 0.036524 | 0.05077 | 0.99829 |
100 μg/m3 | 0.031936 | 1.02297 | 0.99244 | 0.074061 | 0.02394 | 0.99473 |
150 μg/m3 | 0.048231 | 0.68407 | 0.99238 | 0.104182 | 0.0172 | 0.99871 |
150 ml/min | 0.023527 | 5.26137 | 0.99673 | 0.02883 | 0.09525 | 0.99817 |
200 ml/min | 0.019274 | 1.85765 | 0.99491 | 0.036524 | 0.05077 | 0.99829 |
250 ml/min | 0.036529 | 1.75481 | 0.99777 | 0.040162 | 0.02749 | 0.99785 |
表5 准二阶动力学模型的参数和相关系数
Table 5 Fitting parameters and R 2 of pseudo-second order kinetic model
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
k 2 q e 2 | k 2 | R 2 | k 2 q e 2 | k 2 | R 2 | |
50℃ | 0.016986 | 3.08933 | 0.99378 | 0.04159 | 0.07674 | 0.9986 |
100℃ | 0.021945 | 5.94426 | 0.99625 | 0.050562 | 0.13797 | 0.99796 |
150℃ | 0.019274 | 1.85765 | 0.99491 | 0.036524 | 0.05077 | 0.99829 |
200℃ | 0.023564 | 10.85572 | 0.99291 | 0.042458 | 0.20136 | 0.99323 |
50 μg/m3 | 0.019274 | 1.85765 | 0.99491 | 0.036524 | 0.05077 | 0.99829 |
100 μg/m3 | 0.031936 | 1.02297 | 0.99244 | 0.074061 | 0.02394 | 0.99473 |
150 μg/m3 | 0.048231 | 0.68407 | 0.99238 | 0.104182 | 0.0172 | 0.99871 |
150 ml/min | 0.023527 | 5.26137 | 0.99673 | 0.02883 | 0.09525 | 0.99817 |
200 ml/min | 0.019274 | 1.85765 | 0.99491 | 0.036524 | 0.05077 | 0.99829 |
250 ml/min | 0.036529 | 1.75481 | 0.99777 | 0.040162 | 0.02749 | 0.99785 |
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
α | β | R 2 | α | β | R 2 | |
50℃ | 0.02494 | 51.4842 | 0.99749 | 0.06167 | 5.24998 | 0.99588 |
100℃ | 0.03768 | 70.0108 | 0.98555 | 0.08011 | 6.7114 | 0.98541 |
150℃ | 0.02736 | 36.5723 | 0.99673 | 0.05445 | 4.56905 | 0.99729 |
200℃ | 0.04169 | 92.42585 | 0.9949 | 0.06329 | 8.50497 | 0.97737 |
50 μg/m3 | 0.02736 | 36.5723 | 0.99673 | 0.05445 | 4.56905 | 0.99729 |
100 μg/m3 | 0.04659 | 21.50743 | 0.99449 | 0.10741 | 2.17394 | 0.98187 |
150 μg/m3 | 0.07336 | 14.73842 | 0.99602 | 0.16172 | 1.62267 | 0.99394 |
150 ml/min | 0.03638 | 59.73674 | 0.98511 | 0.04473 | 7.24959 | 0.99396 |
200 ml/min | 0.02736 | 36.5723 | 0.99673 | 0.05445 | 4.56905 | 0.99729 |
250 ml/min | 0.05899 | 28.49847 | 0.98443 | 0.05603 | 3.05738 | 0.99261 |
表6 Elovich动力学模型的参数和相关系数
Table 6 Fitting parameters and R 2 of Elovich kinetic model
工况 | PC boiler fly ash | CFB boiler fly ash | ||||
---|---|---|---|---|---|---|
α | β | R 2 | α | β | R 2 | |
50℃ | 0.02494 | 51.4842 | 0.99749 | 0.06167 | 5.24998 | 0.99588 |
100℃ | 0.03768 | 70.0108 | 0.98555 | 0.08011 | 6.7114 | 0.98541 |
150℃ | 0.02736 | 36.5723 | 0.99673 | 0.05445 | 4.56905 | 0.99729 |
200℃ | 0.04169 | 92.42585 | 0.9949 | 0.06329 | 8.50497 | 0.97737 |
50 μg/m3 | 0.02736 | 36.5723 | 0.99673 | 0.05445 | 4.56905 | 0.99729 |
100 μg/m3 | 0.04659 | 21.50743 | 0.99449 | 0.10741 | 2.17394 | 0.98187 |
150 μg/m3 | 0.07336 | 14.73842 | 0.99602 | 0.16172 | 1.62267 | 0.99394 |
150 ml/min | 0.03638 | 59.73674 | 0.98511 | 0.04473 | 7.24959 | 0.99396 |
200 ml/min | 0.02736 | 36.5723 | 0.99673 | 0.05445 | 4.56905 | 0.99729 |
250 ml/min | 0.05899 | 28.49847 | 0.98443 | 0.05603 | 3.05738 | 0.99261 |
1 | UNEP . Mercury fate and transport in the global atmosphere: measurement, models and policy implication report [R]. Geneva, Switzerland: UNEP, 2008. |
2 | UNEP . Global mercury assessment 2013: sources, emissions , releases and environmental transport [R]. Geneva, Switzerland: UNEP Chemicals Branch, 2013. |
3 | 杜雯, 殷立宝, 禚玉群, 等 . 100 MW燃煤电厂非碳基吸附剂喷射脱汞实验研究[J]. 化工学报, 2014, 65(11): 4413-4419. |
Du W, Yin L B, Zhuo Y Q, et al Experimental study on mercury capture using non-carbon sorbents in 100 MW coal-fired power plant [J]. CIESC Journal, 2014, 65(11): 4413-4419. | |
4 | 王铮, 薛建明, 许月阳, 等 . 选择性催化还原协同控制燃煤烟气中汞排放效果影响因素研究[J]. 中国电机工程学报, 2013, 33(14): 32-37. |
Wang Z , Xue J M , Xu Y Y , et al . Research on influencing factors of SCR’s cooperative control in mercury emissions from coal-fired flue [J]. Proceedings of the CSEE, 2013, 33(14): 32-37. | |
5 | 李建荣, 何炽, 商雪松, 等 . SCR脱硝催化剂对烟气中零价汞的氧化效率研究[J]. 燃料化学学报, 2012, 40(2): 241-246. |
LI J R , He C , Shang X S , et .al Oxidation efficiency of elemental mercury in flue gas by SCR De-NO x catalysts [J]. Journal of Fuel Chemistry and Technology, 2012, 40(2): 241-246. | |
6 | Tang T M , Xu J , Lu R J , et al . Enhanced Hg2+ removal and Hg0 reemission control from wet fuel gas desulfurization liquors with additives[J]. Fuel, 2010, 89 (12): 3613-3617. |
7 | Pudasainee D , Seo Y C , Sung J H . Mercury co-beneficial capture in air pollution control devices of coal-fired power plants[J]. International Journal of Coal Geology, 2017, 170: 48-53. |
8 | Hower J C , Senior C L , Suuberg E M , et al . Mercury capture by native fly ash carbons in coal-fired power plants [J]. Progress in Energy & Combustion Science, 2010, 36(4): 510-529. |
9 | Sakulpitakphon T , Hower J C , Trimble A S , et al . Mercury capture by fly ash: study of the combustion of a high-mercury coal at a utility boiler [J]. Energy Fuels, 2000, 14(3): 727-733. |
10 | 王鹏, 吴江, 任建兴, 等 . 飞灰未燃尽碳对吸附烟气汞影响的试验研究[J]. 动力工程学报, 2012, 32(4): 332-337. |
Wang P , Wu J , Ren J X , et al . Experimental study on influence of unburned carbon in fly ash on mercury adsorption in flue gas [J]. Journal of Chinese Society of Power Engineering, 2012, 32(4): 332-337. | |
11 | 江贻满, 段钰锋, 杨祥花, 等 . ESP飞灰对燃煤锅炉烟气汞的吸附特性[J]. 东南大学学报(自然科学版), 2007, 37(3): 436-440. |
Jiang Y M , Duan Y F , Yang X H , et al . Adsorption characterization of coal fired flue gas mercury by ESP fly ashes [J]. Journal of Southeast University (Natural Science Edition), 2007, 37(3): 436-440. | |
12 | Kostova I , Vassileva C , Dai S , et al . Influence of surface area properties on mercury capture behaviour of coal fly ashes from some Bulgarian power plants [J]. International Journal of Coal Geology, 2013, 116/117(5): 227-235. |
13 | Maroto-Valer M M , Zhang Y , Granite E J , et al . Effect of porous structure and surface functionality on the mercury capacity of a fly ash carbon and its activated sample [J]. Fuel, 2005, 84(1): 105-108. |
14 | Zhou Q , Duan Y , Zhu C , et al . Adsorption equilibrium, kinetics and mechanism studies of mercury on coal-fired fly ash [J]. Korean Journal of Chemical Engineering, 2015, 32(7): 1405-1413. |
15 | 顾永正, 张永生, 张振森, 等 . 燃煤飞灰汞吸附动力学及其模型研究[J]. 热力发电, 2015, 44(12): 11-18. |
Gu Y Z , Zhang Y S , Zhang Z S , et al . Adsorption kinetics and models of coal-fired fly ash from mercury removal[J]. Thermal Power Generation, 2015, 44(12): 11-18. | |
16 | 程乐鸣, 岑可法, 倪明江, 等 .循环流化床锅炉炉膛热力计算[J].中国电机工程学报, 2002, 22(12): 146-151. |
Cheng L M , Cen K F , Ni M J , et al . Thermal calculation of a circulating fluidized bed boiler furnace [J]. Proceedings of the CSEE, 2002, 22(12): 146-151. | |
17 | 姜秀民, 孙东红, 闫澈, 等 . 65t/h 示范性油页岩循环流化床电厂锅炉运行实践[J].中国电机工程学报, 2001, 21(2): 69-73. |
Jiang X M , Sun D H , Yan C , et al . Performance characteristics of 65t/h oil shale-fired circulating fluidized bed demonstration utility boiler[J].Proceedings of the CSEE, 2001, 21(2): 69-73. | |
18 | 谢磊, 毛国明, 金晓明, 等 . 循环流化床锅炉燃烧过程预测控制与经济性能优化[J]. 化工学报, 2016, 67(3): 695-700. |
Xie L , Mao G M , Jin X M , et al . Predictive control and economic performance optimization of CFBB combustion process [J]. CIESC Journal, 2016, 67(3): 695-700. | |
19 | 樊保国, 贾里, 李晓栋, 等 . 电站燃煤锅炉飞灰特性对其吸附汞能力的影响[J]. 动力工程学报, 2016, 36(8): 621-628. |
Fan B G , Jia L , Li X D , et al . Study on mercury adsorption by fly ash form coal-fired coilers of power plants [J]. Journal of Chinese Society of Power Engineering, 2016, 36(8): 621-628. | |
20 | 段钰锋, 江贻满, 杨立国, 等 . 循环流化床锅炉汞排放和吸附实验研究[J]. 中国电机工程学报, 2008, 28 (32): 1-5. |
Duan Y F , Jiang Y M , Yang L G , et al . Experimental study on mercury emission and adsorption in circulating fluidized bed boiler [J]. Proceedings of the CSEE, 2008, 28 (32): 1-5. | |
21 | 李晓航, 刘芸, 苏银皎, 等 . 煤粉炉和循环流化床锅炉飞灰特性对其汞吸附能力的影响[J]. 化工学报, 2019, 70(3): 1075-1082. |
Li X H , Liu Y , Su Y J , et al . Difference of fly ash characteristics from PC and CFB boilers and its effect on mercury adsorption capability [J]. CIESC Journal, 2019, 70(3): 1075-1082. | |
22 | 黄勋, 程乐鸣, 蔡毅, 等 . 循环流化床中烟气飞灰汞迁移试验研究[J]. 化工学报, 2014, 65(4): 1387-1395. |
Huang X , Cheng L M , Cai Y , et al . Mercury migration between flue gas and fly ash in circulating fluidized bed [J]. CIESC Journal, 2014, 65(4): 1387-1395. | |
23 | Serre S D , Gullett B K , Ghorishi S B , et al . Entrained-flow adsorption of mercury using activated carbon[J]. Air & Waste Management Association, 2001, 51(5): 733-741. |
24 | 李兵, 蒋海涛, 张立强, 等 . SO2在活性炭表面的吸附平衡和吸附动力学[J]. 煤炭学报, 2012, 37(10): 1737-1742. |
Li B , Jiang H T , Zhang L Q , et al . Adsorption equilibrium and kinetics of SO2 on activated carbon [J]. Journal of China Coal Society, 2012, 37(10): 1737-1742. | |
25 | Kumar Y P , King P , Prasad V S R K . Equilibrium and kinetic studies for the biosorption system of copper (II) ion from aqueous solution using Tectona grandis L.f. leaves powder [J]. Journal of Hazardous Materials, 2006, 137(2): 1211-1217. |
26 | Ozcan A S , Ozcan A . Adsorption of acid dyes from aqueous solutions onto acid-activated bentonitee [J]. Journal of Colloid and Interface Science, 2004, 276(1): 39-46. |
27 | Plazinski W , Dziuba J , Rudzinski W . Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity [J]. Adsorption-Journal of the International Adsorption Society, 2013, 19(5): 1055-1064. |
28 | Plazinski W , Dziuba J , Rudzinski W . Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity [J]. Adsorption, 2013, 19(5): 1055-1064. |
29 | Skodras G , Diamantopoulou I , Pantoleontos G , et al . Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor [J]. Journal of Hazardous Materials, 2008, 158(1): 1-13. |
30 | 尹艳山, 张军, 盛昌栋, 等 . NO在活性炭表面的吸附平衡和动力学研究[J]. 中国电机工程学报, 2010, 30(35): 49-54. |
Yin Y S , Zhang J , Sheng C D , et al . Adsorption equilibrium and kinetics of NO removal on activated carbons [J]. Proceedings of the CSEE, 2010, 30(35): 49-54. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及![]() |
[3] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[4] | 杨克, 贾岳, 纪虹, 邢志祥, 蒋军成. 垃圾焚烧飞灰对瓦斯爆炸压力及火焰传播的抑制作用及机理研究[J]. 化工学报, 2023, 74(8): 3597-3607. |
[5] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[6] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[7] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[8] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[9] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[10] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[11] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[12] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[13] | 王承泽, 顾凯丽, 张晋华, 石建轩, 刘艺娓, 李锦祥. 硫化协同老化零价铁增效去除水中Cr(Ⅵ)的作用机制[J]. 化工学报, 2023, 74(5): 2197-2206. |
[14] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[15] | 陈韶云, 徐东, 陈龙, 张禹, 张远方, 尤庆亮, 胡成龙, 陈建. 单层聚苯胺微球阵列结构的制备及其吸附性能[J]. 化工学报, 2023, 74(5): 2228-2238. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1057
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 425
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||