化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3808-3824.DOI: 10.11949/0438-1157.20190699
刘姣1(),崔佃淼1,王昱涵1,程永刚1,王创创3,路绳治3,石磊2,许光文2()
收稿日期:
2019-06-20
修回日期:
2019-09-04
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
许光文
作者简介:
刘姣(1984—),女,博士,硕士生导师,基金资助:
Jiao LIU1(),Dianmiao CUI1,Yuhan WANG1,Yonggang CHENG1,Chuangchuang WANG3,Shengzhi LU3,Lei SHI2,Guangwen XU2()
Received:
2019-06-20
Revised:
2019-09-04
Online:
2019-10-05
Published:
2019-10-05
Contact:
Guangwen XU
Supported by:
摘要:
由于CO甲烷化的快速表面反应、强放热特性,相比固定床,采用小颗粒催化剂的流化床甲烷化技术在反应活性和催化剂稳定性方面具有明显的技术优势。从高耐磨催化剂、流化床反应器及其创新、短流程两段甲烷化技术构建及其验证等方面总结了流化床甲烷化技术开发的最新进展。优化催化剂前体制备方法、调变催化剂组成可获得具有较高骨架强度和均匀性的催化剂一次微粒,进而通过优化的喷雾造粒工艺和填充黏结剂,制备出具有可调变粒度分布、高强度和高球形度的流化床用粉末催化剂,但其黏结剂的添加明显影响催化剂的低温活性。通过改性如Al2O3和FCC催化剂的球形颗粒,进而负载活性组分,开发了制备高活性、磨损指数小于1.5的流化床甲烷化Ni基催化剂的另一种技术方法。实验室研究证实了流化床甲烷化反应速率极快,在分布板上数毫米处即可实现可能的最高转化率,且在转化率和催化剂稳定性方面明显优于固定床,不仅由于流态化催化剂床层温度均匀,而且催化剂在床层内不停循环,加快了颗粒表面的更新。增大空速和表观气速,流化床的催化剂床层膨胀,反应气体与催化剂颗粒表面间的有效接触面积增加,使得流化床甲烷化对空速和表观气速的可调范围大。操作在更高气速条件的输送床甲烷化避免了操作气速的上限限制,可大幅降低反应器尺寸,有效提高单位截面的原料气负荷能力。输送床甲烷化可采用高热导率的催化剂颗粒传递反应热,相对于气体移热效率高、能力大。流化床甲烷化已在生物废弃物利用和焦炉煤气甲烷化方面开展了侧线示范,形成了相对多段绝热固定床工艺更简单的短流程两段甲烷化新工艺。
中图分类号:
刘姣,崔佃淼,王昱涵,程永刚,王创创,路绳治,石磊,许光文. 流化床甲烷化基础与应用最新进展[J]. 化工学报, 2019, 70(10): 3808-3824.
Jiao LIU,Dianmiao CUI,Yuhan WANG,Yonggang CHENG,Chuangchuang WANG,Shengzhi LU,Lei SHI,Guangwen XU. [J]. CIESC Journal, 2019, 70(10): 3808-3824.
1 | Gao J J , Wang Y L , Su G B , et al . A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas [J]. RSC Advances, 2012, 2: 2358-2368. |
2 | Gao J J , Liu Q , Su G B , et al . Recent advances in methanation catalysts for the production of synthetic natural gas [J]. RSC Advance, 2015, 5: 22759-22776. |
3 | Kopyscinski J , Schildhauer T J , Biollaz S M A . Production of synthetic natural gas (SNG) from coal and dry biomass —a technology review from 1950 to 2009 [J]. Fuel, 2010, 89: 1763-1783. |
4 | Höhlein B , Menzer R , Range J . High temperature methanation in the long-distance nuclear energy transport system [J]. Applied Catalysis, 1981, 1: 125-139. |
5 | Topsoe Haldor . “From coalto substitute natural gas using TREMP” [EB/OL]. http: //. |
6 | Ensell R , Stroud H . The British Gas HICOM methanation process for SNG production [C]//Proceedings of the International Gas Research Conference. UK: British Gas Corporation, 1983: 472-481. |
7 | Stefan R , Jens S , Steffi M , et al . Review on methanation - from fundamentals to current projects [J]. Fuel, 2016, 166: 276-296. |
8 | 朱艳艳, 袁慧, 郭雷, 等 . 国内外甲烷化技术进展研究[J].天然气化工(C1化学与化工) , 2014, 39: 77-82. |
Zhu Y Y , Yuan H , Guo L , et al . Research progress in methanation technology at home and abroad [J]. Natural Gas Chemical Industry, 2014, 39: 77-82. | |
9 | 杨伯伦, 李星星, 伊春海, 等 . 合成天然气技术进展[J]. 化工进展, 2011, 30(1): 110-82. |
Yang B L , Li X X , Yi C H , et al . Technical progress of synthetic natural gas [J]. Chemical Industry and Engineering Progress, 2011, 30(1): 110-82. | |
10 | Liu J , Yu J , Xu G W , et al . Intercorrelation of structure and performance of Ni-Mg/Al2O3 catalyst prepared with different methods for syngas methanation [J]. Catalysis Science & Technology, 2014, 4: 472-481. |
11 | Cui D M , Liu J , Xu G W , et al . Necessity of moderate metal-support interaction in Ni/Al2O3 for syngas methanation at high temperatures [J]. RSC Advances, 2015, 5: 10187-10196. |
12 |
Liu J , Zheng C Y , Xu G W , et al . Synthesis, characterization and catalytic methanation performance of modified kaolin-supported Ni-based catalysts [J]. Chinese Journal of Chemical Engineering, doi: 10.1016/j.cjche.2019.04.009 .
DOI |
13 | Miao B , Ma S S K , Chan S H , et al . Catalysis mechanisms of CO2 and CO methanation [J]. Catalysis Science & Technology, 2016, 6: 4048-4058. |
14 | 王昱涵, 白思, 刘姣, 等 . Ni-Mo双金属催化剂的甲烷化性能与耐硫稳定性[J]. 化工学报, 2017, 69(5): 2063-2072. |
Wang Y H , Bai S , Liu J , et al . Catalytic activity and sulfur-resistance stability of Ni-Mo based catalysts for syngas methanation [J]. CIESC Journal, 2017, 69 (5): 2063-2072. | |
15 | 林江辉, 王琼, 定明月, 等 . 生物质合成气甲烷化机理及催化体系研究进展[J]. 化工学报, 2018, 69(5): 1819-1828. |
Lin J H , Wang Q , Ding M Y , et al . Progress on mechanism and catalysts of biomass syngas methanation [J]. CIESC Journal, 2017, 69(5): 1819-1828. | |
16 | Rahimpour M R , Dehnavi M R , Allahgholipour F , et al . Assessment and comparison of different catalytic coupling exothermic and endothermic reactions: a review [J]. Applied Energy, 2012, 99: 496-512. |
17 | Lu W Z , Teng L H , Xiao W D . Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor [J]. Chemical Engineering Science, 2004, 59: 5455-5464. |
18 | 宋鹏飞, 侯海龙, 侯建国, 等 . 国内外流化床甲烷化技术进展研究[J].天然气化工(C1化学与化工) , 2017, 42: 113-121. |
Song P F , Hou H L , Hou J G , et al . Research progress in fluidized bed methanation technology [J]. Natural Gas Chemical Industry, 2017, 42: 113-121. | |
19 | Streeter R C . Recent developments in fluidized-bed methanation research [C]//Proceedings of the 9th Synthetic Pipeline Gas Symposium. Chicago, IL, USA, 1977: 153-165. |
20 | Schlesinger M D , Demeter J J , Greyson M . Catalyst for producing methane from hydrogen and carbon monoxide [J]. Industrial & Engineering Chemistry Research, 1956, 48: 68-70. |
21 | Greyson M , Demeter J J , Schlesinger M D , et al . Synthesis of Methane [R]. Washington: Bureau of Mines, Department of the Interior, 1955. |
22 | Blazek C F , Baker N R , Tison R R . High-Btu Coal Gasification Processes [R]. Chicago, IL (USA): Institute of Gas Technology, 1979. |
23 | Cobb Jr J T , Streeter R C . Evaluation of fluidized-bed methanation catalysts and reactor modeling [J]. Ind. Eng. Chem. Proc. Des. Dev., 1979, 18: 672-679. |
24 | Graboski M S , Diehl E K . Design and operation of the BCR fluidized bed methanation PEDU [C]// Proceedings of Fifth Synthetic Pipeline Gassymposium. Chicago, IL, USA, 1973. |
25 | Streeter R C , Anderson D A , Cobb Jr J T . Status of the bi-gas program(Ⅱ): Evaluation of fluidized bed methanation catalysts [C]//Proceedings of Eighth Synthetic Pipeline Gas Symposium. Chicago, IL, USA, 1973, 1976: 97-125. |
26 | 李军, 朱庆山, 李洪钟 . 基于甲烷化反应的催化剂颗粒设计与过程强化[J]. 化工学报, 2015, 66(8): 2772-2783. |
Li J , Zhu Q S , Li H Z . Process intensification and catalysts particle design for CO methanation [J]. CIESC Journal, 2015, 66(8): 2772-2783. | |
27 | Su X , Xu J , Huang Y Q , et al . Catalytic carbon dioxide hydrogenation to methane: a review of recent studies [J]. Journal of Energy Chemistry, 2016, 25: 553-565. |
28 | Yang J , Ma W P , Davis B H , et al . Fischer-Tropsch synthesis: a review of the effect of CO conversion on methane selectivity [J]. Applied Catalysis A: General, 2014, 470: 250-260. |
29 | Bemrose C R , Bridgwater J . A review of attrition and attrition test methods [J]. Powder Technology, 1987, 49(2): 97-126. |
30 | Ray Y C , Jiang T S , Jiang T L . Particle population model for a fluidized bed with attrition [J]. Powder Technology, 1987, 52(1): 35-48. |
31 | 罗勇, 张瑞驰 . 荆门催化裂解装置催化剂磨损和跑剂的控制[J]. 石油炼制与化工, 2001, 32(12): 25-28. |
Luo Y , Zhang R C . Control of catalyst abrasion and run-off happened in Jingmen DCC unit [J]. Petroleum Processing and Petrochemicals, 2001, 32(12): 25-28. | |
32 | Scherzer J . Attrition resistant cracking catalyst: US4987110 [P]. 1991-01-22. |
33 | 杨丽静, 田辉平, 严加松 . 硅溶胶系列FCC催化剂制备技术研究[J]. 工业催化, 2006, 14(7): 18-22. |
Yang L J , Tian H P , Yan J S . Research in preparation of FCC catalysts based on silica sol matrix [J]. Industrial Catalysis, 2006, 14(7): 18-22. | |
34 | Wei D G , Goodwin J G , Oukaci R , et al . Attrition resistance of cobalt F-T catalysts for slurry bubble column reactor use [J]. Applied Catalysis A: General, 2001, 210(1/2): 137-150. |
35 | O'Brien R J , Xu L G , Bao S Q , et al . Activity, selectivity and attrition characteristics of supported iron Fischer-Tropsch catalysts [J]. Applied Catalysis A-General, 2000, 196(2): 173-178. |
36 | Bukur D B , Mukesh D , Patel S A . Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis [J]. Industrial & Engineering Chemistry Research, 1990, 29(2): 194-204. |
37 | Bukur D B , Lang X , Mukesh D , et al . Binder/support effects on the activity and selectivity of iron catalysts in the Fischer-Tropsch synthesis [J]. Industrial & Engineering Chemistry Research, 1990, 29(8): 1588-1599. |
38 | SudsakornK, Goodwin J G , Jothimurugesan K , et al . Preparation of attrition-resistant spray-dried Fe Fischer-Tropsch catalysts using precipitated SiO2 [J]. Industrial & Engineering Chemistry Research, 2001, 40(22): 4778-4784. |
39 | Zhao R , Goodwin J G , Jothimurugesan K , et al . Spray-dried iron Fischer-Tropsch catalysts(Ⅰ): Effect of structure on the attrition resistance of the catalysts in the calcined state [J]. Industrial & Engineering Chemistry Research, 2001, 40(4): 1065-1075. |
40 | Contractor R , Bergna H , Horowitz H , et al . Butane oxidation to maleic anhydride over vanadium phosphate catalysts [J]. Catalysis Today, 1987, 1(1/2): 49-58. |
41 | 李春启, 黄艳辉, 于博文, 等 . 一种合成气甲烷化的流化床催化剂及其制备方法和应用: 105381803A [P]. 2016-03-09. |
Li C Q , Huang Y H , Yu B W , et al . A catalyst for fluidized bed methanation and its preparation and application: 105381803A [P]. 2016-03-09. | |
42 | 李春启, 黄艳辉, 于博文, 等 . 一种合成气甲烷化的流化床催化剂及其制备方法: 106925333A [P]. 2017-07-07. |
Li C Q , Huang Y H , Yu B W , et al . A catalyst for fluidized bed methanation and its preparation: 106925333A [P]. 2017-07-07. | |
43 | Cui D M , Liu J , Xu G W , et al . Attrition-resistant Ni-Mg/Al2O3 catalyst for fluidized bed syngas methanation [J]. Catalysis Science & Technology, 2015, 5(6): 3119-3129. |
44 | Cui D M , Liu J , Xu G W , et al . Attrition-resistant Ni-Mg/SiO2-Al2O3 catalysts with different silica sources for fluidized bed syngas methanation [J]. International Journal of Hydrogen Energy, 2017, 42: 4987-4997. |
45 | 崔佃淼 . 合成气输送床甲烷化催化剂与工艺研究[D]. 北京: 中国科学院大学, 2016. |
Cui D M . Study on catalyst and process for syngas methanation in transport bed reactor [D]. Beijing: University of Chinese Academy of Sciences, 2016. | |
46 | 李丹丹, 刘志红, 程易, 等 . 镍基完全甲烷化催化剂的制备及性能评价[J]. 化工进展, 2011, 30: 139-142. |
Li D D , Liu Z H , Cheng Y , et al . Preparation and performance of the nickel-based catalyst for the methanation [J]. Chemical Industry and Engineering Progress, 2011, 30: 139-142. | |
47 | 李丹丹 . 合成气完全甲烷化流化床反应器及催化剂研究[D]. 北京: 北京化工大学, 2012. |
Li D D . Study on catalysts and the fluidized bed reactor for syngas methanation [D]. Beijing: Beijing University of Chemical Technology, 2012. | |
48 | Jia C M , Dai Y H , Chew J W , et al . Nickel-cobalt catalyst supported on TiO2-coated SiO2 spheres for CO2 methanation in a fluidized bed [J]. International Journal of Hydrogen Energy, 2019, 44: 13443-13455. |
49 | 刘姣, 余剑, 许光文 . 一种Ni基催化剂微球的制备方法及其用途: 108295859A [P]. 2018-07-20. |
Liu J , Yu J , Xu G W . A preparation method for sphere nickel-based catalyst and its application: 108295859A [P]. 2018-07-20. | |
50 | Kopyscinski J . Production of synthetic natural gas in a fluidized bed reactor [D]. Switzerland: ETH Zurich, 2010. |
51 | Kopyscinski J , Schildhauer T J , Biollaz S M A . Methanation in a fluidized bed reactor with high initial CO partial pressure(Ⅰ): Experimental investigation of hydrodynamics, mass transfer effects, and carbon deposition [J]. Chemical Engineering Science, 2011, 66(5): 924-934. |
52 | Kopyscinski J , Schildhauer T J , Biollaz S M A . Methanation in a fluidized bed reactor with high initial CO partial pressure(Ⅱ): Modeling and sensitivity study [J]. Chemical Engineering Science, 2011, 66(8): 1612-1621. |
53 | Kopyscinski J , Schildhauer T J , Biollaz S M A . Fluidized-bed methanation: interaction between kinetics and mass transfer [J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 2781-2790. |
54 | Seemann M C , Schildhauer T J , Biollaz S M A . Fluidized bed methanation of wood-derived producer gas for the production of synthetic natural gas [J]. Industrial & Engineering Chemistry Research, 2010, 49(15): 7034-7038. |
55 | Kopyscinski J , Schildhauer T J , Vogel F , et al . Applying spatially resolved concentration and temperature measurements in a catalytic plate reactor for the kinetic study of CO methanation [J]. Journal of Catalysis, 2010, 271: 262-279. |
56 | Liu J , Shen W L , Xu G W , et al . Syngas methanation for substitute natural gas over Ni-Mg/Al2O3 catalyst in fixed and fluidized bed reactors [J]. Catalysis Communications, 2013, 38: 35-39. |
57 | Bartholomew C H . Mechanisms of catalyst deactivation [J]. Applied Catalysis A: General, 2001, 212(1/2): 17-60. |
58 | Liu B , Ji S F . Comparative study of fluidized-bed and fixed-bed reactor for syngas methanation over Ni -W/TiO2-Al2O3 catalyst [J]. Journal of Energy Chemistry, 2013, 22: 740-746. |
59 | 刘姣 . 合成气加压流化床等温甲烷化催化剂研究[D]. 北京: 中国科学院大学, 2013. |
Liu J . Study on catalyst for syngas methanation in pressurized fluidized bed reactor [D]. Beijing: University of Chinese Academy of Sciences, 2013. | |
60 | Liu Y , Hinrichsen O . CFD simulation of hydrodynamics and methanation reactions in a fluidized-bed reactor for the production of synthetic natural gas [J]. Industrial & Engineering Chemistry Research, 2014, 53(22): 9348-9356. |
61 | Zhang Y L , Ye M , Liu Z M , et al . Emulsion phase expansion of Geldart a particles in bubbling fluidized bed methanation reactors: a CFD-DEM study [J]. Powder Technology, 2015, 275: 199-210. |
62 | 张玉黎 . 甲烷化流化床反应器中流化质量的研究[D]. 南京: 东南大学, 2016. |
Zhang Y L . Investigation of the fluidization quality in fluidized bed methanation reactors [D]. Nanjing: Southeast University, 2016. | |
63 | Sun L Y , Luo K , Fan J R , Production of synthetic natural gas by CO methanation over Ni/Al 2O 3 catalyst in fluidized bed reactor [J]. Catalysis Communications, 2018, 105: 37-42. |
64 | 许光文, 刘姣, 崔佃淼, 等 . 一种合成气催化甲烷化方法及装置: 104341259A [P]. 2015-02-11. |
Xu G W , Liu J , Cui D M , et al . Method and device for catalytic methanation of synthesis gas: 104341259A [P]. 2015-02-11. | |
65 | Xu G W , Liu J , Cui D M , et al . Method and device for catalytic methanation of synthesis gas: US9758440 B2 [P]. 2015-02-11. |
66 | Xu G W , Liu J , Cui D M , et al . Method and device for catalytic methanation of synthesis gas: IP Australia 2013395317 [P]. 2015-02-11. |
67 | Liu J , Cui D M , Xu G W , et al . Syngas methanation in fluidized bed for an advanced two-stage process of SNG production [J]. Fuel Processing Technology, 2016, 141: 130-137. |
68 | Liu J , Cui D M , Xu G W , et al . Syngas methanation over spray-granulated Ni/Al2O3 catalyst in a laboratory transport bed reactor [J]. Chemical Engineering & Technology, 2019, 42: 129-136. |
69 | 王昱涵 . 耐磨Ni基催化剂输送床甲烷化反应特性和动力学研究[D]. 北京: 中国科学院大学, 2018. |
Wang Y H . Performance characterization and reaction kinetics of attrition-resistant Ni-based catalyst for syngas methanation in transport bed reactor [D]. Beijing: University of Chinese Academy of Sciences, 2018. | |
70 | 程易, 储博钊, 翟绪丽 . 一种合成气完全甲烷化的装置和方法: 102180756A [P]. 2011-09-14. |
Cheng Y , Chu B Z , Zhai X L . Device and method for complete methanation of synthesis gas: 102180756A [P]. 2011-09-14. | |
71 | Sun L Y , Luo K , Fan J R . Numerical investigation on methanation kinetic and flow behavior in full-loop fluidized bed reactor [J]. Fuel, 2018, 231: 85-93. |
72 | 程易, 储博钊, 翟绪丽 . 一种循环流化床合成气直接甲烷化的方法: 102180757A [P]. 2011-09-14. |
Cheng Y , Chu B Z , Zhai X L . Method for synthesis gas methanation in a circulating fluidized bed: 102180757A [P]. 2011-09-14. | |
73 | 苗强 . 甲烷化流化磁控反应器系统: 103464059A [P]. 2013-12-25. |
Miao Q . Magnetic fluidized bed reactor for methanation: 103464059A [P]. 2013-12-25. | |
74 | 余剑, 耿素龙, 刘姣, 等 . 一种多通道微型流化床及其用途: 105921082A [P]. 2016-09-07. |
Yu J , Geng S L , Liu J , et al . Multi-channel micro fluidized bed reactor and its application: 105921082A [P]. 2016-09-07. | |
75 | Liu J , Cui D M , Xu G W , et al . Performance characteristics of fluidized bed syngas methanation over Ni-Mg/Al2O3 catalyst [J]. Chinese Journal of Chemical Engineering, 2015, 23: 86-92. |
76 | Seemann M . Methanation of biosyngas in a fluidized bed reactor-development of a one-step synthesis process, featuring simultaneous methanation, watergas shift and low temperature tar reforming [D]. Switzerland: ETH Zurich, 2006. |
77 | 王熙庭 . 提高生物废弃物制甲烷产率的新技术将进行长期试验运转[J]. 天然气化工(C1化学与化工), 2017, 42(1): 57-63. |
Wang X T . Advanced process for high methane yield from biomass offal will be in operation [J]. Natural Gas Chemical Industry, 2017, 42(1): 57-63. | |
78 | M·泽曼, S·比奥拉兹, S·施图基 . 合成生成甲烷的方法: 1960954 [P]. 2017-05-09. |
Seemann M , Biollaz S , Stucki S . Method for methane production: 1960954 [P]. 2017-05-09. | |
79 | F·沃格尔, T-B·图昂, S·施图基 等 . 由生物质产生甲烷和/或甲烷水合物的方法: 101278033 [P]. 2008-10-01. |
Vogel F , -B Truong T , Stucki S , et al . Method for methane and/or methane hydrates production from biomass: 101278033 [P]. 2008-10-01. |
[1] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[2] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[5] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[6] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
[9] | 张琦钰, 高利军, 苏宇航, 马晓博, 王翊丞, 张亚婷, 胡超. 碳基催化材料在电化学还原二氧化碳中的研究进展[J]. 化工学报, 2023, 74(7): 2753-2772. |
[10] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[11] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[12] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[13] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
[14] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[15] | 陈巨辉, 张谦, 舒崚峰, 李丹, 徐鑫, 刘晓刚, 赵晨希, 曹希峰. 基于DEM方法的旋转流化床纳米颗粒流动特性研究[J]. 化工学报, 2023, 74(6): 2374-2381. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||