化工学报 ›› 2019, Vol. 70 ›› Issue (10): 3651-3662.DOI: 10.11949/0438-1157.20190718
收稿日期:
2019-06-25
修回日期:
2019-09-02
出版日期:
2019-10-05
发布日期:
2019-10-05
通讯作者:
汤伟伟
作者简介:
王耀国(1996—),男,硕士研究生,基金资助:
Yaoguo WANG(),Shaolei ZHAO,Yichun YANG,Junbo GONG,Jingkang WANG,Weiwei TANG()
Received:
2019-06-25
Revised:
2019-09-02
Online:
2019-10-05
Published:
2019-10-05
Contact:
Weiwei TANG
摘要:
手性是自然界和生物体中广泛存在的一种性质,约半数以上的药物活性成分含有手性中心,受手性分子的空间立体选择性影响,手性对映体药物往往较其外消旋体表现出更高的活性、更低的副作用,因而,精准制备手性单一对映体药物具有非常重要的研究意义。目前,手性外消旋体拆分是制备单一对映体的最高效、便捷的途径,而结晶拆分是实现手性单一对映体分离最为重要且广泛应用的技术。综述了近年来手性药物结晶拆分的研究进展,梳理了结晶拆分研究的发展历程,重点介绍了基于经典拆分方法(非对映体成盐拆分和优先结晶)和近年来发展的基于优先富集和Viedma熟化的对映体拆分新技术以及结晶拆分的强化方法,并简述了色谱、膜分离等其他手性外消旋体分离方法。最后,对手性药物的结晶拆分方法进行了总结和展望。
中图分类号:
王耀国, 赵绍磊, 杨一纯, 龚俊波, 王静康, 汤伟伟. 手性药物结晶拆分的研究进展[J]. 化工学报, 2019, 70(10): 3651-3662.
Yaoguo WANG, Shaolei ZHAO, Yichun YANG, Junbo GONG, Jingkang WANG, Weiwei TANG. Recent progress on chiral resolution of pharmaceuticals by crystallization[J]. CIESC Journal, 2019, 70(10): 3651-3662.
1 | RouhiA M. Chirality at work[J]. Chem. Eng. News, 2003, 81: 56-61. |
2 | BonnerW. The origin and amplification of biomolecular chirality[J]. Origins of Life and Evolution of Biospheres, 1991, 21: 59-111. |
3 | ChungW J, OhJ W, KwakK, et al. Biomimetic self-templating supramolecular structures[J]. Nature, 2011, 478: 364-368. |
4 | RouhiA M. Chiral business[J]. Chemical & Engineering News Archive, 2003, 81(18): 45-61. |
5 | StephensT, BrynnerR. Dark remedy: the impact of thalidomide and its revival as a vital medicine[J]. Nursing History Review, 2006, 14(7302): 271-272. |
6 | JiangB, WangH, FuQ M, et al. The chiral pyrethroid cycloprothrin: stereoisomer synthesis and separation and stereoselective insecticidal activity[J]. Chirality, 2008, 20(2): 96-102. |
7 | StinsonS C. Chiral pharmaceuticals[J]. Chemical & Engineering News Archive, 2001, 79(40): 79-97. |
8 | MillershipJ S, FitzpatrickA. Commonly used chiral drugs: a survey[J]. Chirality, 1993, 5(8): 573-576. |
9 | StinsonS C. Chiral drug market shows signs of maturity [J]. Chemical & Engineering News, 1997, 75(42): 38-70. |
10 | WangY M, ChenA. Enantioenrichment by crystallization[J]. Organic Process Research & Development, 2008, 12(2): 282-290. |
11 | KrstulovićA. stereochemistryDrug. Analytical methods and pharmacology[J]. Journal of Chromatography, 1989, 487: 236-238. |
12 | 黄蓓, 杨立荣, 吴坚平. 手性拆分技术的工业应用[J]. 化工进展, 2002, 21(6): 375-380. |
HuangB, YangL R, WuJ P. Chiral resolution techniques in industrial practice[J]. Chemical Industry and Engineering Progress, 2002, 21(6): 375-380. | |
13 | LorenzH, PerlbergA, SapoundjievD, et al. Crystallization of enantiomers[J]. Chemical Engineering and Processing: Process Intensification, 2006, 45(10): 863-873. |
14 | XieJ, ZhouQ. Creation of chiral materials: yesterday, today and tomorrow[J]. Chinese Science Bulletin, 2015, 60: 28-29. |
15 | 梁会珺, 彭彩虹. 手性拆分技术的研究进展[J]. 精细石油化工, 2004, (6): 65-70. |
LiangH J, PengC H. Process in enantioseparation[J]. Speciality Petrochemicals, 2004, (6): 65-70. | |
16 | 乔小飞, 许松林. 手性药物的工业拆分[J]. 天津化工, 2007, 21(5): 1-5. |
QiaoX F, XuS L. Industrial separation of chiral drugs[J]. Tianjin Chemical Industry, 2007, 21(5): 1-5. | |
17 | PraveenK S, NagaiahK, ChorghadeM. The first total synthesis of(S)-clavulazine from D-mannitol[J]. Tetrahedron Letters, 2006, 47: 7149-7151. |
18 | KennedyJ, FigueiredoZ. Chirality in industry — the commercial manufacture and applications of optically active compounds[J]. Banach Center, 1994, 23: 76. |
19 | MughalR J, DaveyR, BlagdenN. Application of crystallization inhibitors to chiral separations [J]. Crystal Growth & Design, 2007, 7(2): 218-224. |
20 | Encarnación-GómezL G, BommariusA S, RousseauR W. Reactive crystallization of selected enantiomers: chemo-enzymatic stereoinversion of amino acids at supersaturated conditions[J]. Chemical Engineering Science, 2015, 122: 416-425. |
21 | GouL, RoblS, LeonhardK, et al. A hybrid process for chiral separation of compound-forming systems[J]. Chirality, 2011, 23(2): 118-127. |
22 | KeurentjesJ T F, VoermansF J M. ChemInform abstract: membrane separations in the production of optically pure compounds[J]. ChemInform, 1997, 28(45): 157-180. |
23 | BruinT J M D, MarcelisA T M, ZuilhofH, et al. Separation of amino acid enantiomers by micelle-enhanced ultrafiltration[J]. Chirality, 2000, 12(8): 627-636. |
24 | MengC, ShengY, ChenQ, et al. Exceptional chiral separation of amino acid modified graphene oxide membranes with high-flux[J]. Journal of Membrane Science, 2017, 526: 25-31. |
25 | 赵磊, 赵平. 膜分离拆分对映异构体研究进展[J]. 河北工业科技, 2009, 26(1): 53-57. |
ZhaoL, ZhaoP. Research development of enantiomer separation by membrane process[J]. Hebei Journal of lndustrial Science and Technology, 2009, 26(1): 53-57. | |
26 | HeikeL. Processes to separate enantiomers[J]. Angewandte Chemie, 2014, 5: 53. |
27 | KüstersE, SpöndlinC, VolkenC, et al. Direct resolution of β-hydroxy myristic acid enantiomers by chiral phase gas and liquid chromatography[J]. Chromatographia, 1992, 33(3/4): 159-162. |
28 | MaierN M. Separation of enantiomers: needs, challenges, perspectives[J]. Journal of Chromatography A, 2001, 906(1): 3-33. |
29 | FrancotteE R. Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers[J]. Journal of Chromatography A, 2001, 906(1/2): 379-397. |
30 | DingG, LiuY, CongR, et al. Chiral separation of enantiomers of amino acid derivatives by high-performance liquid chromatography on a norvancomycin-bonded chiral stationary phase[J]. Talanta, 2004, 62(5): 997-1003. |
31 | PelusoP, MamaneV, CossuS. Liquid Chromatography enantioseparations of halogenated compounds on polysaccharide-based chiral stationary phases: role of halogen substituents in molecular recognition[J]. Chirality, 2015, 27(10): 667-684. |
32 | YeN, LiJ, XieY, et al. Graphene oxide coated capillary for chiral separation by CE[J]. Electrophoresis, 2013, 34(6): 841-845. |
33 | MohrS, PilajS, SchmidM G. Chiral separation of cathinone derivatives used as recreational drugs by cyclodextrin-modified capillary electrophoresis[J]. Electrophoresis, 2012, 33(11): 1624-1630. |
34 | TamásS, ErzsébetV, RóbertI, et al. Separation of vinca alkaloid enantiomers by capillary electrophoresis applying cyclodextrin derivatives and characterization of cyclodextrin complexes by nuclear magnetic resonance spectroscopy[J]. Journal of Pharmaceutical & Biomedical Analysis, 2010, 53(5): 1258-1266. |
35 | EeckhautA V, MichotteY. Chiral separation of cetirizine by capillary electrophoresis[J]. Electrophoresis, 2006, 27(12): 2376-2385. |
36 | WanI W A, ArsadS R, MaarofH, et al. Chiral separation of four stereoisomers of ketoconazole drugs using capillary electrophoresis[J]. Chirality, 2015, 27(3): 223-227. |
37 | 赵绍磊, 王灵宇, 吴送姑. 药物多晶型的研究进展[J]. 化学工业与工程, 2018, 35(3): 16-25. |
ZhaoS L, WangL Y, WuS G. Progress in the research of pharmaceutical polymorph[J]. Chemical Industry and Engineering, 2018, 35(3): 16-25. | |
38 | 汤伟伟, 李斯, 龚俊波, 等. 有机晶体成核分子机理研究进展[J]. 化学工业与工程, 2018, 35(3): 2-11. |
TangW W, LiS, GongJ B, et al. Research progress on molecular mechanism of nucleation of organic crystals[J]. Chemical Industry and Engineering, 2018, 35(3): 2-11. | |
39 | 刘文强, 李莉. 手性药物及其中间体拆分方法的研究进展[J]. 药学学报, 2018, (1): 37-46. |
LiuW Q, LiL. Research progress of resolution of chiral drugs and their synthetic intermediates[J]. Acta Pharmaceutica Sinica, 2018, (1): 37-46. | |
40 | PasteurL. Recherches sur les relation qui peuvent exister entre la forme crystalline e al composition chimique, et le sens de la polarisation rotatoire[J]. Ann. Chim. Phys.,1848, 3: 442–459. |
41 | LorenzH, SeidelmorgensternA. A contribution to the mandelic acid phase diagram[J]. Thermochimica Acta, 2004, 415(1): 55-61. |
42 | LorenzH, Seidel-MorgensternA. Binary and ternary phase diagrams of two enantiomers in solvent systems[J]. Thermochimica Acta, 2002, 382(1/2): 129-142. |
43 | SrisangaS, HorstJ H. Racemic compound, conglomerate, or solid solution: phase diagram screening of chiral compounds[J]. Crystal Growth & Design, 2010, 10(4): 1808-1812. |
44 | GuyL, CrassousJ, AndraudC. CRC handbook of optical resolutions via diastereomeric salt formation[J]. Chirality, 2002, 24(2): 21. |
45 | LamW, NgK. Diastereomeric salt crystallization synthesis for chiral resolution of ibuprofen[J]. AIChE Journal, 2007, 53(2): 429-437. |
46 | SistlaV S, LangermannJ V, LorenzH, et al. Analysis and comparison of commonly used acidic resolving agents in diastereomeric salt resolution - examples for DL-serine[J]. Crystal Growth & Design, 2011, 11(9): 3761-3768. |
47 | BarveI J, ChenL H, WeiP C P, et al. Enantioselective synthesis of (-)-(R)silodosin by ultrasound-assisted diastereomeric crystallization[J]. Tetrahedron, 2013, 69(13): 2834-2843. |
48 | SpringuelG, CollardL, LeyssensT. Ternary and quaternary phase diagrams: key tools for chiral resolution through solution cocrystallization[J]. Crystengcomm, 2013, 15(39): 7951-7958. |
49 | CairaM R, NassimbeniL R, ScottJ L, et al. Resolution of optical isomers of 4-amino-p-chlorobutyric acid lactam by co-crystallization[J]. Journal of Chemical Crystallography, 1996, 26(2): 117-122. |
50 | SánchezG O, MendozaN F, CedilloC A, et al. Chiral resolution of RS-praziquantel via diastereomeric co-crystal pair formation with lmalic acid[J]. Crystal Growth & Design, 2016, 16(1): 307-314. |
51 | VriesT, WynbergH, EchtenE V. The family approach to the resolution of racemates[J]. Angewandte Chemie International Edition, 1998, 37(17): 2349-2354. |
52 | KinbaraK, HashimotoY, SukegawaM, et al. Crystal structures of the salts of chiral primary amines with achiral carboxylic acids: recognition of the commonly-occurring supramolecular assemblies of hydrogen-bond networks and their role in the formation of conglomerates[J]. Journal of the American Chemical Society, 1996, 118(14): 3441-3449. |
53 | RodrigoA A, LorenzH, Seidel-MorgensternA. Online monitoring of preferential crystallization of enantiomers[J]. Chirality, 2004, 16(8): 499-508. |
54 | LiZ J, ZellM T, MunsonE J, et al. Characterization of racemic species of chiral drugs using thermal analysis, thermodynamic calculation, and structural studies[J]. Journal of Pharmaceutical Sciences, 1999, 88(3): 337-346. |
55 | Svang-AriyaskulA, KorosW J, RousseauR W. Chiral separation using a novel combination of cooling crystallization and a membrane barrier: resolution of DL-glutamic acid[J]. Chemical Engineering Science, 2009, 64(9): 1980-1984. |
56 | HeinJ E, CaoB H, van der MeijdenM W, et al. Resolution of omeprazole using coupled preferential crystallization: efficient separation of a nonracemizable conglomerate salt under near-equilibrium conditions[J]. Organic Process Research & Development, 2013, 17(6): 946-950. |
57 | MedinaD D, AharonG, YitzhakM. Chiral amplification in crystallization under ultrasound radiation[J]. Chemistry, 2011, 17(40): 11139-11142. |
58 | YinP, ZhangZ M, LvH, et al. Chiral recognition and selection during the self-assembly process of protein-mimic macroanions[J]. Nature Communications, 2015, 6: 6475. |
59 | WanX, YeX, CuiJ, et al. Self-reporting inhibitors: a single crystallization process to obtain two optically pure enantiomers[J]. Angewandte Chemie International Edition, 2018, 57(27): 8120-8124. |
60 | YeX, CuiJ, LiB, et al. Enantiomer-selective magnetization of conglomerates for quantitative chiral separation[J]. Nature Communications, 2019, 10(1): 1964. |
61 | PolenskeD, LorenzH, Seidel-MorgensternA. Potential of different techniques of preferential crystallization for enantioseparation of racemic compound forming systems[J]. Chirality, 2009, 21(8): 728-737. |
62 | PeakmanT M. Stereochemistry of organic compounds[J]. Geochimica et Cosmochimica Acta, 1995, 59(9): 1901-1902. |
63 | RodrigoA A, LorenzH, Seidel-MorgensternA. Online monitoring of preferential crystallization of enantiomers[J]. Chirality, 2004, 16(8): 499-508. |
64 | TamuraR, TakahashiH, HirotsuK, et al. Unusual disordered crystal structure of a racemate exhibiting a novel enantiomeric resolution: preferential enrichment[J]. Angewandte Chemie International Edition, 1998, 37(20): 2876-2878. |
65 | TamuraR. Engineering Crystallography: From Molecule to Crystal to Functional Form[M]. Berlin: Springer, 2017: 353-364. |
66 | IwamaS, KuyamaK, MoriY, et al. Highly efficient chiral resolution of DL-arginine by cocrystal formation followed by recrystallization under preferential-enrichment conditions[J]. Chemistry - A European Journal, 2014, 20(33): 10343-10350. |
67 | TakahashiH, IwamaS, CleversS, et al. In situ observation of polymorphic transition during crystallization of organic compounds showing preferential enrichment by means of temperature-controlled video-microscopy and time-resolved X-ray powder diffraction[J]. Crystal Growth & Design, 2017, 17(2): 671-676. |
68 | IwamaS, HoriguchiM, SatoH, et al. Observation of the preferential enrichment phenomenon for essential α-amino acids with a racemic crystal structure[J]. Crystal Growth & Design, 2010, 10(6): 2668-2675. |
69 | ViedmaC. Chiral symmetry breaking during crystallization: complete chiral purity induced by nonlinear autocatalysis and recycling[J]. Physical Review Letters, 2005, 94(6): 065504. |
70 | SogutogluL C, SteendamR R, MeekesH, et al. Viedma ripening: a reliable crystallisation method to reach single chirality[J]. Chemical Society Reviews, 2015, 44(19): 6723-6732. |
71 | ViedmaC. Enantiomeric crystallization from DL-aspartic and DL-glutamic acids: implications for biomolecular chirality in the origin of life[J]. Origins of Life & Evolution of the Biosphere, 2001, 31(6): 501-509. |
72 | IgglandM, MazzottiM. A population balance model for chiral resolution via viedma ripening[J]. Crystal Growth & Design, 2011, 11(10): 4611-4622. |
73 | EngwerdaA H J, KoningN, TinnemansP, et al. Deracemization of a racemic allylic sulfoxide using viedma ripening[J]. Crystal Growth & Design, 2017, 17(8): 4454-4457. |
74 | SpixL, MeekesH, BlaauwR H, et al. Complete deracemization of proteinogenic glutamic acid using viedma ripening on a metastable conglomerate[J]. Crystal Growth & Design, 2017, 12(12): 5796–5799. |
75 | Steendam, R R E, BrouwerM C T, HuijsE M E, et al. Enantiopure isoindolinones through Viedma ripening[J]. Chemistry — A European Journal, 2014, 20(42): 13527-13530. |
[1] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[2] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[3] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[4] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[5] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[6] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[7] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[8] | 张缘良, 栾昕奇, 苏伟格, 李畅浩, 赵钟兴, 周利琴, 陈健民, 黄艳, 赵祯霞. 离子液体复合萃取剂选择性萃取尼古丁的研究及DFT计算[J]. 化工学报, 2023, 74(7): 2947-2956. |
[9] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[10] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[11] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
[12] | 朱兴驰, 郭志远, 纪志永, 汪婧, 张盼盼, 刘杰, 赵颖颖, 袁俊生. 选择性电渗析镁锂分离过程模拟优化[J]. 化工学报, 2023, 74(6): 2477-2485. |
[13] | 蔺彩虹, 王丽, 吴瑜, 刘鹏, 杨江峰, 李晋平. 沸石中碱金属阳离子对CO2/N2O吸附分离性能的影响[J]. 化工学报, 2023, 74(5): 2013-2021. |
[14] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[15] | 张正, 何永平, 孙海东, 张荣子, 孙正平, 陈金兰, 郑一璇, 杜晓, 郝晓刚. 蛇形流场电控离子交换装置用于选择性提锂[J]. 化工学报, 2023, 74(5): 2022-2033. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 1524
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||