化工学报 ›› 2020, Vol. 71 ›› Issue (4): 1440-1449.DOI: 10.11949/0438-1157.20190781
谭畯坤1,2(),刘玉东1,2(),耿世超1,2,陈兵1,2,童明伟1,2
收稿日期:
2019-07-09
修回日期:
2019-10-12
出版日期:
2020-04-05
发布日期:
2020-04-05
通讯作者:
刘玉东
作者简介:
谭畯坤(1993—),男,硕士研究生,基金资助:
Junkun TAN1,2(),Yudong LIU1,2(),Shichao GENG1,2,Bing CHEN1,2,Mingwei TONG1,2
Received:
2019-07-09
Revised:
2019-10-12
Online:
2020-04-05
Published:
2020-04-05
Contact:
Yudong LIU
摘要:
针对现有的冷热复合治疗探针中存在的问题,设计了直径3 mm的真空探针,用电阻加热和真空层相结合的方法解决探针非工作段的低温问题,以液氮冷冻和电阻加热的方式实现探针的冷热交替过程。分别在空气、蒸馏水和离体猪肝中进行探针的性能测试实验。发现电加热与真空层结合可以提高探针非工作段的温度;在蒸馏水中探针形成轴向长度为3.6 cm,径向长度为1.8 cm的冰球;在离体猪肝中形成轴向冻结直径约为3.6 cm,化冻直径为1.2 cm的区域。使用数值计算的方法计算探针的有效治疗范围,形象直观地展示组织在冷冻和复温过程中的温度场分布,为临床手术提供数据支持。从整体效果看,探针有良好的冷冻和复温性能,促进冷热复合治疗的进一步发展。
中图分类号:
谭畯坤, 刘玉东, 耿世超, 陈兵, 童明伟. 真空探针冷冻和复温性能实验测试及数值模拟[J]. 化工学报, 2020, 71(4): 1440-1449.
Junkun TAN, Yudong LIU, Shichao GENG, Bing CHEN, Mingwei TONG. Test and numerical simulation of freezing and rewarming performance of vacuum probe[J]. CIESC Journal, 2020, 71(4): 1440-1449.
实验条件 | 第一组 | 第二组 | 第三组 | 第四组 |
---|---|---|---|---|
空气温度/℃ | 18.5 | 18.5 | 18.5 | 18.5 |
探针真空层真空度/kPa | 90 | 90 | 90 | 70、80、90 |
液氮罐压力/MPa | 0.20、0.25、0.30 | 0.30 | 0.30 | 0.30 |
工作段加热功率/W | 0.30、0.68、1.20 | — | — | |
非工作段加热功率/W | — | — | 0.22、0.50、0.69 | — |
实验持续时间/s | 600 | 600 | 600 | 600 |
表1 空气中实验条件
Table 1 Experimental conditions in air
实验条件 | 第一组 | 第二组 | 第三组 | 第四组 |
---|---|---|---|---|
空气温度/℃ | 18.5 | 18.5 | 18.5 | 18.5 |
探针真空层真空度/kPa | 90 | 90 | 90 | 70、80、90 |
液氮罐压力/MPa | 0.20、0.25、0.30 | 0.30 | 0.30 | 0.30 |
工作段加热功率/W | 0.30、0.68、1.20 | — | — | |
非工作段加热功率/W | — | — | 0.22、0.50、0.69 | — |
实验持续时间/s | 600 | 600 | 600 | 600 |
时间/s | 有效区/mm | 冻结线/mm |
---|---|---|
100 | 3.6 | 5 |
200 | 7.2 | 9 |
300 | 8.9 | 11 |
400 | 10.5 | 12.9 |
500 | 11.5 | 13 |
600 | 12.4 | 15.8 |
表2 冷冻过程影响区域
Table 2 Influence zone in freezing process
时间/s | 有效区/mm | 冻结线/mm |
---|---|---|
100 | 3.6 | 5 |
200 | 7.2 | 9 |
300 | 8.9 | 11 |
400 | 10.5 | 12.9 |
500 | 11.5 | 13 |
600 | 12.4 | 15.8 |
时间/s | 有效区下限(42℃) /mm | 有效区上限(45℃) /mm | 正常组织无损伤区 /mm |
---|---|---|---|
700 | 0 | 0 | 0 |
800 | 2.5 | 2.3 | 0.2 |
1000 | 4.4 | 3.8 | 0.6 |
1200 | 7.2 | 5.7 | 1.5 |
1400 | 10.4 | 8 | 2.4 |
表3 复温过程影响区域
Table 3 Influence zone in rewarming process
时间/s | 有效区下限(42℃) /mm | 有效区上限(45℃) /mm | 正常组织无损伤区 /mm |
---|---|---|---|
700 | 0 | 0 | 0 |
800 | 2.5 | 2.3 | 0.2 |
1000 | 4.4 | 3.8 | 0.6 |
1200 | 7.2 | 5.7 | 1.5 |
1400 | 10.4 | 8 | 2.4 |
1 | Bray F, Ferlay J, Soerjomataram I. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68(6): 394-424. |
2 | Trusheim J, Dunbar E, Battiste J, et al. A state-of-the-art review and guidelines for tumor treating fields treatment planning and patient follow-up in glioblastoma[J]. CNS Oncology, 2017, 6(1): 29-43. |
3 | Green D M, Jaffe N, Paed D. et al. The role of chemotherapy in the treatment of Wilms tumor[J]. Cancer, 1979, 44(1): 52-57. |
4 | Hellevik T, Martinez-Zubiaurre I. Radiotherapy and the tumor stroma: the importance of dose and fractionation[J]. Frontiers in Oncology, 2014, 4(1): 1-12. |
5 | Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, et al. Advances in brain tumor surgery for glioblastoma in adults[J]. Brain Sciences, 2017, 7(12): 166. |
6 | Pu Y, Zhou K, Jin C. et al. Effectiveness and safety of high-intensity focused ultrasound in treatment of hepatocellular carcinoma adjacent to large vessels[J]. Tumor, 2017, 37(5): 497-503. |
7 | Calin M A, Diaconeasa A, Savastru D. et al. Photosensitizers and light sources for photodynamic therapy of the Bowen s disease[J]. Archives of Dermatological Research, 2011, 303(3): 145-151. |
8 | Gage A A, Baust J. Mechanisms of tissue injury in cryosurgery[J]. Cryobiology, 1998, 37(3): 171-186. |
9 | Wessalowski R, Schneider D T, Mils O, et al. Regional deep hyperthermia for salvage treatment of children and adolescents with refractory or recurrent non-testicular malignant germ-cell tumours: an open-label, non-randomised, single-institution, phase 2 study[J]. The Lancet Oncology, 2013, 14(9): 843-852. |
10 | Bai J F, Liu P, Xu L X. et al. Recent advances in thermal treatment techniques and thermally induced immune responses against cancer[J]. IEEE Transactions on Biomedical Engineering, 2014, 61(5): 1497-1505. |
11 | Hajri A. Gene therapy for cancer treatment-state of the art[M]//Genetically Modified Organisms and Genetic Engineering in Research and Therapy. Karger Publishers, 2012: 86-102. |
12 | Pasquali P. A Short History of Cryosurgery[M]// Cryosurgery. Heidelberg, Berlin: Springer, 2015. |
13 | Clarke D M, Baust J M, van Buskirk R G, et al. Addition of anticancer agents enhances freezing-induced prostate cancer cell death: implications of mitochondrial involvement[J]. Cryobiology, 2004, 49(1): 45-61. |
14 | Gowardhan B, Thomas B, Asterling S, et al. Cryosurgery for prostate cancer—experience with third-generation cryosurgery and novel developments in the field[J]. European Urology Supplements, 2007, 6(8): 516-520. |
15 | Tarkowski R, Rzaca M. Cryosurgery in the treatment of women with breast cancer—a review[J]. Gland Surgery, 2014, 3(2): 88-93. |
16 | Atanackovic D, Pollok K, Faltz C. et al. Patients with solid tumors treated with high-temperature whole body hyperthermia show a redistribution of naive/memory T-cell subtypes[J]. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 2006, 290(3): R585-R594. |
17 | Sindram D, Lau K N, Martinie J B, et al. Hepatic tumor ablation[J]. Surg. Clin. North Am., 2010, 90(4): 863-876. |
18 | Kuzmenko A P, Todor I N, Mosienko V S. The influence of combined application of cryosurgery and hyperthermia on the tumor process in experiment[J]. Eksperimentalnaya Onkologiya, 1990, 12(2): 60-61. |
19 | Sun J, Zhang A, Xu L X. Evaluation of alternate cooling and heating for tumor treatment[J]. International Journal of Heat and Mass Transfer, 2008, 51(23/24): 5478-5485. |
20 | Zhang J R. Endocare targeted cryoablation therapy[J]. Journal of Biomedical Engineering Research, 2005, 24(2): 128-132. |
21 | Hewitt P M, Zhao J, Akhter J, et al. A comparative laboratory study of liquid nitrogen and argon gas cryosurgery systems[J]. Cryobiology, 1997, 35(4): 303-308. |
22 | 闫井夫, 周一欣, 邓中山, 等. 自制冷热刀医疗设备靶向治疗肿瘤的性能实验[J]. 中国组织工程研究与临床康复, 2007, 11(22): 4325-4328. |
Yan J F, Zhou Y X, Deng Z S, et al. Performance of self-made cryosurgical and hyperthermia equipment for targeted tumor treatment[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2007, 11(22): 4325-4328. | |
23 | 苏颖颖, 常兆华, 王成焘. 新型多刀肿瘤超低温冷冻治疗设备的研制及性能实验[J]. 上海交通大学学报, 2009, 43(4): 648-652 |
Su Y Y, Chang Z H, Wang C T. Development and experiments of an innovative multiprobe cryosurgical device[J]. Journal of Shanghai Jiao Tong University, 2009, 43(4): 648-652. | |
24 | Yan J, Tong M W, Xu G C, et al. Basal experiment on vacuum liquid CO2 cryoprobe[J]. Journal of Central South University of Technology, 2006, 13: 102-104. |
25 | Zhao X, Chua K J. Regulating the cryo-freezing region of biological tissue with a controlled thermal device[J]. Medical Engineering & Physics, 2014, 36(3): 325-334. |
26 | Cohen J K, Miller R J. Thermal protection of urethra during cryosurgery of prostate[J]. Cryobiology, 1994, 31(3): 313-316. |
27 | Bischof J C, Merry N, Hulbert J. Rectal protection during prostate cryosurgery: design and characterization of an insulating probe[J]. Cryobiology, 1997, 34(1): 80-92. |
28 | Rabin Y, Lung D C, Stahovich T F. Computerized planning of cryosurgery using cryoprobes and cryoheaters[J]. Technology in Cancer Research & Treatment, 2004, 3(3): 229-243. |
29 | Rabin Y, Stahovich T F. Cryoheater as a means of cryosurgery control[J]. Physics in Medicine & Biology, 2003, 48(5): 619. |
30 | Rabin Y, Stahovich T F. The thermal effect of urethral warming during cryosurgery[J]. CryoLetters, 2002, 23(6): 361-374. |
31 | Rabin Y. Key issues in bioheat transfer simulations for the application of cryosurgery planning[J]. Cryobiology, 2008, 56(3): 248-250. |
32 | Zhao G, Luo D W, Liu Z F, et al. Comparative study of the cryosurgical processes with two different cryosurgical systems: the endocare cryoprobe system versus the novel combined cryosurgery and hyperthermia system[J]. Latin American Applied Research, 2007, 37(3): 215-222. |
33 | Zhao G, Zhang H F, Guo X J, et al. Effect of blood flow and metabolism on multidimensional heat transfer during cryosurgery[J]. Medical Engineering & Physics, 2007, 29(2): 205-215. |
34 | Pennes H H. Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. Journal of Applied Physiology, 1998, 85(1): 5-34. |
35 | Kengne E, Lakhssassi A. Bioheat transfer problem for one-dimensional spherical biological tissues[J]. Mathematical Biosciences, 2015, 269: 1-9. |
36 | Mochnacki B, Majchrzak E. Numerical model of thermal interactions between cylindrical cryoprobe and biological tissue using the dual-phase lag equation[J]. International Journal of Heat and Mass Transfer, 2017, 108: 1-10. |
37 | Chua K J. Fundamental experiments and numerical investigation of cryo-freezing incorporating vascular network with enhanced nano-freezing[J]. International Journal of Thermal Sciences, 2013, 70: 17-31. |
38 | Nicolajsen H, Hvidt A. Phase behavior of the system trehalose-NaCl-water[J]. Cryobiology, 1994, 31(2): 199-205. |
39 | Davies C R, Saidel G M, Harasaki H. Sensitivity analysis of one-dimensional heat transfer in tissue with temperature-dependent perfusion[J]. Journal of Biomechanical Engineering, 1997, 119(1): 77-80. |
40 | Rai K N, Rai S K. Heat transfer inside the tissues with a supplying vessel for the case when metabolic heat generation and blood perfusion are temperature dependent[J]. Heat and Mass Transfer, 1999, 35(4): 345-350. |
41 | Chua K J. Fundamental experiments and numerical investigation of cryo-freezing incorporating vascular network with enhanced nano-freezing[J]. International Journal of Thermal Sciences, 2013, 70: 17-31. |
42 | Toner M, Cravalho E G, Stachecki J, et al. Nonequilibrium freezing of one-cell mouse embryos. Membrane integrity and developmental potential[J]. Biophysical Journal, 1993, 64(6): 1908-1921. |
43 | Wang H, Zhang S Z, Chen G M, et al. Experimental study on a cryoprobe utilizing throttling of high pressure argon[J]. Cryogenics, 2014, (1): 22-26. |
44 | Tian H Y, Wang H, Zhou Y, et al. Measurement and analysis of operation performance of the“endocare”cryoprobe system[J]. Space Medicine and Medical Engineering, 2003, 16(1): 60-63. |
45 | Seifert J K, Gerharz C D, Mattes F, et al. A pig model of hepatic cryotherapy. In vivo temperature distribution during freezing and histopathological changes[J]. Cryobiology, 2003, 47(3): 214-226. |
46 | Hanai A, Yang W L, Ravikumar T S. Induction of apoptosis in human colon carcinoma cells HT29 by sublethal cryo-injury: mediation by cytochrome C release[J]. International Journal of Cancer, 2001, 93(4): 526-533. |
47 | Tschoep-Lechner K E, Milani V, Berger F, et al. Gemcitabine and cisplatin combined with regional hyperthermia as second-line treatment in patients with gemcitabine-refractory advanced pancreatic cancer[J]. International Journal of Hyperthermia, 2013, 29(1): 8-16. |
48 | Bhayani K R, Rajwade J M, Paknikar K M. Radio frequency induced hyperthermia mediated by dextran stabilized LSMO nanoparticles: in vitro evaluation of heat shock protein response[J]. Nanotechnology, 2012, 24(1): 015102. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[5] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[6] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[7] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[8] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[9] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[10] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[11] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[12] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[13] | 史方哲, 甘云华. 超薄热管启动特性和传热性能数值模拟[J]. 化工学报, 2023, 74(7): 2814-2823. |
[14] | 于源, 陈薇薇, 付俊杰, 刘家祥, 焦志伟. 几何相似涡流空气分级机环形区流场变化规律研究及预测[J]. 化工学报, 2023, 74(6): 2363-2373. |
[15] | 张媛媛, 曲江源, 苏欣欣, 杨静, 张锴. 循环流化床燃煤机组SNCR脱硝过程气液传质和反应特性[J]. 化工学报, 2023, 74(6): 2404-2415. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||