化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2705-2712.DOI: 10.11949/0438-1157.20200081
鞠佳1(),祁文旭1,2,孔鹏飞1,汤佳玉1,梁飞雪1,张晓欣1,贺高红2(),杨磊1
收稿日期:
2020-01-19
修回日期:
2020-03-25
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
贺高红
作者简介:
鞠佳(1978—),女,博士,讲师,基金资助:
Jia JU1(),Wenxu QI1,2,Pengfei KONG1,Jiayu TANG1,Feixue LIANG1,Xiaoxin ZHANG1,Gaohong HE2(),Lei YANG1
Received:
2020-01-19
Revised:
2020-03-25
Online:
2020-06-05
Published:
2020-06-05
Contact:
Gaohong HE
摘要:
胆红素是一种内源性毒素,当人体肝脏系统受损或代谢受阻时,则在体内累积,引起高胆红素血症,其具有神经毒性,严重时甚至会危及生命。无机纳米材料作为胆红素吸附剂越来越受到关注,但也存在因团聚而吸附效率降低、因颗粒过小而容易泄漏的问题。以聚偏氟乙烯(PVDF)为基膜原料,掺杂纳米TiO2颗粒,DMAc为溶剂、PVP为致孔剂,通过干湿相转化法,制得TiO2/PVDF共混微滤膜。当铸膜液中PVDF浓度为10%(质量)、TiO2含量为1%(质量)、PVP含量为6%(质量)时,制备的TiO2/PVDF共混微滤膜的胆红素特异性吸附显著。电镜照片及EDX能谱发现,该膜内部及孔隙中均匀分布TiO2颗粒,颗粒无团聚现象。实验还考察了胆红素初始浓度、吸附时间、吸附温度、pH等吸附条件的影响。
中图分类号:
鞠佳, 祁文旭, 孔鹏飞, 汤佳玉, 梁飞雪, 张晓欣, 贺高红, 杨磊. TiO2/PVDF共混微滤膜的制备及其吸附胆红素的研究[J]. 化工学报, 2020, 71(6): 2705-2712.
Jia JU, Wenxu QI, Pengfei KONG, Jiayu TANG, Feixue LIANG, Xiaoxin ZHANG, Gaohong HE, Lei YANG. Preparation of TiO2/PVDF blend microfiltration membrane and its adsorption of bilirubin[J]. CIESC Journal, 2020, 71(6): 2705-2712.
图3 TiO2含量对TiO2/PVDF共混微滤膜对胆红素吸附量的影响(胆红素浓度2.5 mg/ml,pH 10.9,25℃,吸附2 h)
Fig.3 Effect of TiO2 content on bilirubin adsorption capacity of TiO2/PVDF blend microfiltration membrane(bilirubin concentration 2.5 mg/ml, pH 10.9, 25℃, adsorption time 2 h)
膜 | J / (ml/(cm2·min)) | θ/ (°) | W1 / g | W2 / g | VM / cm2 | ε / % |
---|---|---|---|---|---|---|
PVDF-10-0膜 | 18.6 | 71 | 0.0149 | 0.0513 | 0.052 | 70.0 |
PVDF-10-1膜 | 32.8 | 58 | 0.0175 | 0.0559 | 0.056 | 68.5 |
表1 微滤膜性能的比较
Table 1 Comparison of properties of microfiltration membranes
膜 | J / (ml/(cm2·min)) | θ/ (°) | W1 / g | W2 / g | VM / cm2 | ε / % |
---|---|---|---|---|---|---|
PVDF-10-0膜 | 18.6 | 71 | 0.0149 | 0.0513 | 0.052 | 70.0 |
PVDF-10-1膜 | 32.8 | 58 | 0.0175 | 0.0559 | 0.056 | 68.5 |
图6 吸附温度和时间对TiO2/PVDF共混微滤膜的胆红素吸附量的影响(胆红素浓度2.5 mg/ml,pH 10.9)
Fig.6 Effects of adsorption temperature and time on bilirubin adsorption capacity of TiO2/PVDF blend microfiltration membrane(bilirubin concentration 2.5 mg/ml, pH 10.9)
图7 胆红素初始浓度对TiO2/PVDF共混微滤膜的胆红素吸附量的影响(pH 10.9,37℃,吸附2 h)
Fig.7 Effect of initial bilirubin concentration on bilirubin adsorption capacity of TiO2/PVDF blend microfiltration membrane(pH 10.9, 37℃, adsorption time 2 h)
图9 胆红素溶液pH对TiO2/PVDF共混微滤膜吸附胆红素的影响(胆红素浓度2.4 mg/ml,37℃,吸附2 h)
Fig.9 Effect of bilirubin solution pH on bilirubin adsorption capacity of TiO2/PVDF blend microfiltration membrane(bilirubin concentration 2.4 mg/ml, 37℃, adsorption time 2 h)
吸附剂 | 胆红素饱和吸附量/ (mg/g membrane) | 文献 |
---|---|---|
TiO2纳米晶体膜 | 17.1 | [ |
Procion Blue H-5R担载纤维素膜 | 26.0 | [ |
聚(吡咯-3-羧酸)氧化铝复合膜 | 40.7 | [ |
β-环糊精改性聚醚砜中空纤维膜 | 51.0 | [ |
TiO2颗粒 | 2.4 | 本文 |
TiO2/PVDF复合膜 | 49.5 | 本文 |
表2 TiO2/PVDF复合膜与其他吸附材料的吸附性能比较
Table 2 Comparison of adsorption performance of TiO2/PVDF composite membrane with other adsorption materials
吸附剂 | 胆红素饱和吸附量/ (mg/g membrane) | 文献 |
---|---|---|
TiO2纳米晶体膜 | 17.1 | [ |
Procion Blue H-5R担载纤维素膜 | 26.0 | [ |
聚(吡咯-3-羧酸)氧化铝复合膜 | 40.7 | [ |
β-环糊精改性聚醚砜中空纤维膜 | 51.0 | [ |
TiO2颗粒 | 2.4 | 本文 |
TiO2/PVDF复合膜 | 49.5 | 本文 |
1 | Houlihan D D, Armstrong M J, Newsome P N. Investigation of Jaundice[J]. Medicine, 2011, 39(9): 518-522. |
2 | 赖芳芳, 张丙宏. 胆红素对新生儿神经系统影响的研究进展[J]. 医学综述, 2018, 24(9): 1704-1708. |
Lai F F, Zhang B H. Research progress of the effect of bilirubin on neonatal nervous system[J]. Medical Recapitulate, 2018, 24(9): 1704-1708. | |
3 | 麻开旺, 陈俊平, 李光大. 胆红素医用吸附剂研究进展[J]. 离子交换与吸附, 2014, (3): 278-288. |
Ma K W, Chen J P, Li G D. Research progress in medical bilirubin adsorbent[J]. Ion Exchange and Adsorption, 2014, (3): 278-288. | |
4 | Shi W, Zhang F, Zhang G. Adsorption of bilirubin with polylysine carrying chitosan-coated nylon affinity membranes[J]. Journal of Chromatography B, 2005, 819(2): 301-306. |
5 | Timin A, Rumyantsev E, Solomonov A. Synthesis and application of amino-modified silicas containing albumin as hemoadsorbents for bilirubin adsorption[J]. Journal of Non-Crystalline Solids, 2014, 385: 81-88. |
6 | Piemonte V, Turchetti L, Annesini M C. Bilirubin removal from albumin-containing solutions: dynamic adsorption on anionic resin[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(5): 708-713. |
7 | 倪非非, 舒桂明, 李可, 等. 用于胆红素吸附的β-环糊精改性PVDF血浆分离膜的制备[J]. 膜科学与技术, 2018, 38(3): 17-24. |
Ni F F, Shu G M, Li K, et al. Preparation of PVDF plasma separation adsorption membrane by modified β-cyclodextrin for bilirubin removal[J]. Membrane Science and Technology, 2018, 38(3): 17-24. | |
8 | Chen J, Ma Y, Wang L, et al. Preparation of chitosan/SiO2-loaded graphene composite beads for efficient removal of bilirubin[J]. Carbon, 2018, 143: 352-361. |
9 | Li Z, Song X, Cui S, et al. Fabrication of macroporous reduced graphene oxide composite aerogels reinforced with chitosan for high bilirubin adsorption[J]. RSC Advances, 2018, 8(15): 8338-8348. |
10 | Wu K, Yang W, Jiao Y, et al. A Surface molecularly imprinted electrospun polyethersulfone (PES) fiber mat for selective removal of bilirubin[J]. Journal of Materials Chemistry B, 2017, 5(29): 5763-5773. |
11 | Yang Z, Zhang C. Molecularly imprinted hydroxyapatite thin film for bilirubin recognition[J]. Biosensors and Bioelectronics, 2011, 29(1): 167-171. |
12 | Yola M L, Gode C, Atar N. Molecular imprinting polymer with polyoxometalate/carbon nitride nanotubes for electrochemical recognition of bilirubin[J]. Electrochimica Acta, 2017, 246: 135-140. |
13 | Ma C, Gao Q, Xia K, et al. Three-dimensionally porous graphene: a high-performance adsorbent for removal of albumin-bonded bilirubin[J]. Colloids and Surfaces B, 2017, 149: 146-153. |
14 | Muller B R. Effect of particle size and surface area on the adsorption of albumin-bonded bilirubin on activated carbon[J]. Carbon, 2010, 48(12): 3607-3615. |
15 | Zong W, Chen J, Han W, et al. Preparation of chitosan/amino multiwalled carbon nanotubes nanocomposite beads for bilirubin adsorption in hemoperfusion[J]. Journal of Biomedical Materials Research Part B, 2018, 106(1): 96-103. |
16 | Ou Y, Gong Q, Liang J. Carbon nanotube-chitosan composite beads with radially aligned channels and nanotube-exposed walls for bilirubin adsorption[J]. Advanced Engineering Materials, 2015, 17(4): 460-466. |
17 | Ju J, Liang F, Zhang X, et al. Advancement in separation materials for blood purification therapy[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1383-1390. |
18 | 张晖, 刘国聪. N掺杂TiO2纳米膜吸附胆红素分子的石英晶体微天平研究[J]. 分析科学学报, 2011, 27(6): 24-29. |
Zhang H, Liu G C. Studies on the adsorption behavior of bilirubin on N-doped TiO2 nanofilm by quartz crystal microbalance[J]. Journal of Analytical Science, 2011, 27(6): 24-29. | |
19 | Yamazaki K, Shinke K, Ogino T. Selective adsorption of bilirubin against albumin to oxidized single-wall carbon nanohorns[J]. Colloids & Surfaces B Biointerfaces, 2013, 112(12): 103-107. |
20 | Yang Z, Si S, Fung Y. Bilirubin adsorption on nanocrystalline titania films[J]. Thin Solid Films, 2007, 515(7/8): 3344-3351. |
21 | 谢亚林, 司士辉, 杨政鹏, 等. 胆红素在纳米TiO2膜上的吸附行为研究[J]. 化学通报, 2006, 69(12): 931-936. |
Xie Y L, Si S H, Yang Z P, et al. Study of adsorption behavior of bilirubin on nanocrystalline titania films[J]. Chemistry Bulletin, 2006, 69(12): 931-936. | |
22 | 李孟岩, 鞠佳, 谢磊, 等. PVDF微滤膜的制备、改性及其血液净化应用初探[J]. 辽宁石油化工大学学报, 2019, 39(4): 8-10. |
Li M Y, Ju J, Xie L, et al. Preliminary study on preparation, modification and blood purification of PVDF microfiltration membrane[J]. Journal of Liaoning Shihua University, 2019, 39(4): 8-10. | |
23 | 阮雪华, 徐燕, 周子渊, 等. 聚乙烯亚胺(PEI)改性多孔膜动态吸附废水中的Co2+[J]. 化工进展, 2017, 36(12): 4658-4663. |
Ruan X H, Xu Y, Zhou Z Y, et al. Dynamic adsorption of Co2+ from wastewater by polyethyleneimine (PEI) -grafted porous membranes[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4658-4663. | |
24 | 聂飞, 贺高红, 赵薇, 等. 疏水SiO2/PTFPMS杂化复合膜的制备及其气体分离性能[J]. 化工学报, 2014, 65(8): 3019-3025. |
Nie F, He G H, Zhao W, et al. Preparation and gas separation performance of hydrophobic SiO2/PTFPMS hybrid composite membrane[J]. CIESC Journal, 2014, 65(8): 3019-3025. | |
25 | Chen Z, Deng M, Chen Y, et al. Preparation and performance of cellulose acetate/polyethyleneimine blend microfiltration membranes and their applications[J]. Journal of Membrane Science, 2004, 235(1/2): 73-86. |
26 | Ju J, He G, Duan Z, et al. Improvement of bilirubin adsorption capacity of cellulose acetate/polyethyleneimine membrane using sodium deoxycholate[J]. Biochemical Engineering Journal, 2013, 79: 144-152. |
27 | 鞠佳, 聂飞, 段志军, 等. 亲和膜配基的结构和密度对胆红素吸附的影响[J]. 化工学报, 2013, 64(1): 303-310. |
Ju J, Nie F, Duan Z J, et al. Effect of ligand composition and ligand density of affinity membrane on bilirubin removal[J]. CIESC Journal, 2013, 64(1): 303-310. | |
28 | 郭春刚, 张召才, 李雪梅, 等. 纳米TiO2复配添加剂对PVDF中空纤维膜结构和性能的影响[J]. 净水技术, 2013, 32(4): 67-71. |
Guo C G, Zhang Z C, Li X M, et al. Influence on structure and performance for PVDF hollow fiber membrane with combined additives of nanoscale TiO2[J]. Water Purification Technology, 2013, 32(4): 67-71. | |
29 | Davies C R, Malchesky P S, Saidel G M. Temperature and albumin effects on adsorption of bilirubin from standard solution using anion-exchange resin[J]. Artificial Organs, 1990, 14(1): 14-19. |
30 | Xie M, Sun J, Chen L. Procion Blue H-5R functionalized cellulose membrane with specific removal of bilirubin[J]. Cellulose, 2019, 26(13/14): 8073-8085. |
31 | Shi W, Cao H, Song C, et al. Poly(pyrrole-3-carboxylic acid)-alumina composite membrane for affinity adsorption of bilirubin[J]. Journal of Membrane Science, 2010, 353(1/2): 151-158. |
32 | Salimi E, Ghaee A, Ismail A F. β-Cyclodextrin modified PES hollow fiber membrane, a new strategy for bilirubin separation[J]. Materials Letters, 2018, 215: 276-279. |
[1] | 晁京伟, 许嘉兴, 李廷贤. 基于无管束蒸发换热强化策略的吸附热池的供热性能研究[J]. 化工学报, 2023, 74(S1): 302-310. |
[2] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[3] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[4] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[5] | 盛冰纯, 于建国, 林森. 铝基锂吸附剂分离高钠型地下卤水锂资源过程研究[J]. 化工学报, 2023, 74(8): 3375-3385. |
[6] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[7] | 王杰, 丘晓琳, 赵烨, 刘鑫洋, 韩忠强, 许雍, 蒋文瀚. 聚电解质静电沉积改性PHBV抗氧化膜的制备与性能研究[J]. 化工学报, 2023, 74(7): 3068-3078. |
[8] | 刘杰, 吴立盛, 李锦锦, 罗正鸿, 周寅宁. 含乙烯基胺酯键聚醚类可逆交联聚合物的制备及性能研究[J]. 化工学报, 2023, 74(7): 3051-3057. |
[9] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[10] | 龙臻, 王谨航, 任俊杰, 何勇, 周雪冰, 梁德青. 离子液体协同PVCap抑制天然气水合物生成实验研究[J]. 化工学报, 2023, 74(6): 2639-2646. |
[11] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[12] | 王新悦, 王俊杰, 曹思贤, 王翠, 李灵坤, 吴宏宇, 韩静, 吴昊. 玻璃内包材界面修饰对机械应力诱导的单克隆抗体聚集体形成的影响[J]. 化工学报, 2023, 74(6): 2580-2588. |
[13] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
[14] | 王蕾, 王磊, 白云龙, 何柳柳. SA膜状锂离子筛的制备及其锂吸附性能[J]. 化工学报, 2023, 74(5): 2046-2056. |
[15] | 张建华, 陈萌萌, 孙雅雯, 彭永臻. 部分短程硝化同步除磷耦合Anammox实现生活污水高效脱氮除磷[J]. 化工学报, 2023, 74(5): 2147-2156. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||