化工学报 ›› 2020, Vol. 71 ›› Issue (7): 3060-3070.DOI: 10.11949/0438-1157.20191379
收稿日期:
2019-11-13
修回日期:
2020-03-20
出版日期:
2020-07-05
发布日期:
2020-07-05
通讯作者:
阎昌琪
作者简介:
杨宽(1992—),男,博士研究生,基金资助:
Kuan YANG(),Changqi YAN(),Xiaxin CAO
Received:
2019-11-13
Revised:
2020-03-20
Online:
2020-07-05
Published:
2020-07-05
Contact:
Changqi YAN
摘要:
采用去离子水作为实验工质,在低压低流速自然循环工况下开展了单面加热可视化窄矩形通道内的过冷沸腾摩擦阻力特性实验研究。实验中测量了实验段内的压降数据,并通过高速摄影仪拍摄了窄矩形通道内的气液两相图像,提出了过冷沸腾条件下的两相摩擦压降的剥离计算方法。基于本实验中获得摩擦压降数据,对分别基于均相流模型和分液相模型的经典两相摩擦压降计算关系式进行了评估,实验结果表明:采用不同等效黏度计算方法的均相流模型计算结果比实验值明显偏小;而分相流模型中,Sun and Mishiba关系式和Tran关系式均能够较好地预测摩擦阻力,计算值与实验值的平均相对偏差在±15%以内。结合实验数据,以分相流模型方法为基础,考虑全液相Reynolds数、Martinelli参数和Laplace数的影响,获得了计算分液相折算系数的经验关系式,与实验数据符合较好, 平均相对误差在10%范围内。
中图分类号:
杨宽, 阎昌琪, 曹夏昕. 自然循环窄矩形通道内过冷沸腾两相摩擦阻力特性[J]. 化工学报, 2020, 71(7): 3060-3070.
Kuan YANG, Changqi YAN, Xiaxin CAO. Subcooled flow boiling resistance characteristics in narrow rectangular channel under natural circulation condition[J]. CIESC Journal, 2020, 71(7): 3060-3070.
测量装置 | 型号 | 量程 | 精度 | 响应时间 |
---|---|---|---|---|
电磁流量计 | 科隆OPTIFLUX4000F | -0.1~1.0 m3/h | 0.2% | 5ms |
差压传感器1 | 横河EJA110E | -1.0~1.0 kPa | 0.055% | 90ms |
差压传感器2 | 横河EJA110E | -2.0~2.0 kPa | 0.055% | 90ms |
差压传感器3 | 罗斯蒙特3051CD | -3.0~5.0 kPa | 0.075% | 100ms |
表1 测量仪表参数
Table 1 Parameters of measurement instruments
测量装置 | 型号 | 量程 | 精度 | 响应时间 |
---|---|---|---|---|
电磁流量计 | 科隆OPTIFLUX4000F | -0.1~1.0 m3/h | 0.2% | 5ms |
差压传感器1 | 横河EJA110E | -1.0~1.0 kPa | 0.055% | 90ms |
差压传感器2 | 横河EJA110E | -2.0~2.0 kPa | 0.055% | 90ms |
差压传感器3 | 罗斯蒙特3051CD | -3.0~5.0 kPa | 0.075% | 100ms |
实验参数 | 范围 |
---|---|
系统压力 | 0.1~0.3 MPa |
入口过冷度 | 20~70℃ |
热通量 | 80~250 kW/m2 |
质量流速 | 0~500 kg/(m2·s) |
表2 实验参数范围
Table 2 Range of experimental parameters
实验参数 | 范围 |
---|---|
系统压力 | 0.1~0.3 MPa |
入口过冷度 | 20~70℃ |
热通量 | 80~250 kW/m2 |
质量流速 | 0~500 kg/(m2·s) |
模型 | MRE/% | Ω/% |
---|---|---|
McAdams模型[ | 18.85 | 85.71 |
Dukler模型[ | 20.681 | 82.14 |
Beattie and Whalley模型[ | 16.67 | 96.43 |
Awad and Muzychka模型[ | 18.80 | 85.71 |
表3 均相流模型计算结果和实验值比较
Table 3 Comparison of calculation results of homogeneous models with experimental data
模型 | MRE/% | Ω/% |
---|---|---|
McAdams模型[ | 18.85 | 85.71 |
Dukler模型[ | 20.681 | 82.14 |
Beattie and Whalley模型[ | 16.67 | 96.43 |
Awad and Muzychka模型[ | 18.80 | 85.71 |
模型 | MRE/% | Ω/% |
---|---|---|
Chisholm C模型[ | 17.41 | 85.71 |
王广飞关系式[ | 88.13 | 0 |
Mishiba and Hibiki模型[ | 34.80 | 28.57 |
Lee and Lee模型[ | 36.52 | 32.14 |
Sun and Mishiba模型[ | 12.21 | 100 |
Zhang and Mishiba模型[ | 15.38 | 85.71 |
表4 分液相折算系数方法的计算结果和实验值比较
Table 4 Comparison of calculation results of ?l2 based models with experimental data
模型 | MRE/% | Ω/% |
---|---|---|
Chisholm C模型[ | 17.41 | 85.71 |
王广飞关系式[ | 88.13 | 0 |
Mishiba and Hibiki模型[ | 34.80 | 28.57 |
Lee and Lee模型[ | 36.52 | 32.14 |
Sun and Mishiba模型[ | 12.21 | 100 |
Zhang and Mishiba模型[ | 15.38 | 85.71 |
模型 | MRE/% | Ω/% |
---|---|---|
Chisholm B模型[ | 11.08 | 96.43 |
Muller-Steinhagen and Heck模型[ | 19.28 | 85.71 |
Tran模型[ | 12.28 | 96.43 |
表5 全液相折算系数方法计算结果和实验值比较
Table 5 Comparison of calculation results of ?lo2 based models with experimental data
模型 | MRE/% | Ω/% |
---|---|---|
Chisholm B模型[ | 11.08 | 96.43 |
Muller-Steinhagen and Heck模型[ | 19.28 | 85.71 |
Tran模型[ | 12.28 | 96.43 |
1 | Kandlikar S G. Two-phase flow patterns, pressure drop, and heat transfer during boiling in minichannel flow passages of compact evaporators[J]. Heat Transfer Engineering, 2002, 23(1): 5-23. |
2 | Ye C. China advanced research reactor (CARR): a new reactor to be built in China for neutron scattering studies[J]. Physica B: Condensed Matter, 1997, 241: 48-49. |
3 | Gong D X, Huang S F, Wang G B, et al. Heat transfer calculation on plate-type fuel assembly of high flux research reactor[J]. Science and Technology of Nuclear Installations, 2015, 2015: 1-13. |
4 | 王广飞, 阎昌琪, 孙立成, 等. 窄矩形通道内两相流动压降特性研究[J]. 原子能科学技术, 2011, 45(6): 677-681. |
Wang G F, Yan C Q, Sun L C, et al. Resistance characteristics of two-phase flow through narrow rectangular duct[J]. Atomic Energy Science and Technology, 2011, 45(6): 677-681. | |
5 | 王洋, 阎昌琪, 孙立成, 等. 矩形通道内气水两相流摩擦阻力计算模型[J]. 原子能科学技术, 2013, 47(10): 1793-1798. |
Wang Y, Yan C Q, Sun L C, et al. Model for calculating frictional resistance of air-water two-phase flow in rectangular channels[J]. Atomic Energy Science and Technology, 2013, 47(10): 1793-1798. | |
6 | 金光远, 阎昌琪, 孙立成, 等. 矩形通道内两相流动阻力特性及计算方法[J]. 原子能科学技术, 2013, 47(5): 740-744. |
Jin G Y, Yan C Q, Sun L C, et al. Resistance characteristic and calculating method of two-phase flow in rectangular channel[J]. Atomic Energy Science and Technology, 2013, 47(5): 740-744. | |
7 | 秦胜杰, 陈炳德, 闫晓, 等. 小宽高比矩形通道两相阻力特性研究[J]. 原子能科学技术, 2013, 47(1): 70-74. |
Qin S J, Chen B D, Yan X, et al. Two phase pressure drop characteristics in rectangular channel with low aspect ratio[J]. Atomic Energy Science and Technology, 2013, 47(1): 71-74. | |
8 | Chisholm D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10(12): 1767-1778. |
9 | 刘传成, 阎昌琪, 孙立成, 等. 矩形窄通道内流动沸腾阻力实验与计算方法研究[J]. 原子能科学技术, 2012, 46(5): 537-541. |
Liu C C, Yan C Q, Sun L C, et al. Experimental and methodological research on pressure drop of flow boiling in narrow rectangular channel[J]. Atomic Energy Science and Technology, 2012, 46(5): 537-541. | |
10 | 孙奇, 赵华, 郗昭, 等. 低流速过冷沸腾压降实验与计算方法研究[J]. 核动力工程, 2005, 26(4): 305-311. |
Sun Q, Zhao H, Xi Z, et al. Experimental and predictive study of pressure drop in low-flow sub-cooled boiling[J]. Nuclear Power Engineering, 2005, 26(4): 305-311. | |
11 | 孙奇, 杨瑞昌, 覃世伟, 等. 过冷沸腾蒸汽-水两相流真实含汽率模型[J]. 清华大学学报(自然科学版), 2004, 44(11): 1580-1584. |
Sun Q, Yang R C, Qin S W, et al. Prediction of true mass quality in subcooled steam-water flow boiling[J]. Journal of Tsinghua University, 2004, 44(11): 1580-1584. | |
12 | 颜建国, 郭鹏程, 马嘉琦, 等. 高热流条件下过冷沸腾流动阻力特性试验研究[J]. 化工学报, 2019, 70(11): 4257-4267. |
Yan J G, Guo P C, Ma J Q, et al. Experimental study on pressure drop for subcooled water flow boiling under high heat fluxes[J]. CIESC Journal, 2019, 70(11): 4257-4267. | |
13 | 赵楠, 张旺, 杨立新. 不同宽度窄缝通道过冷沸腾[J]. 化工学报, 2016, 67: 47-56. |
Zhao N, Zhang W, Yang L X. Subcooled boiling in narrow channels with different sizes[J]. CIESC Journal, 2016, 67: 47-56. | |
14 | 田春平, 阎昌琪, 王建军, 等. 倾斜对窄矩形通道内流动阻力特性影响[J]. 化工学报, 2016, 67(9): 3633-3639. |
Tian C P, Yan C Q, Wang J J, et al. Effect of inclination on flow resistance characteristic in narrow rectangular channel[J]. CIESC Journal, 2016, 67(9): 3633-3639. | |
15 | Shah R K, London A L. Laminar Flow Forced Convection in Ducts: a Source Book for Compact Heat Exchanger Analytical Data[M]. New York: Academic Press, 2014. |
16 | 孙奇, 杨瑞昌. 低流速净蒸汽产生点模型预测过冷沸腾空泡率[J]. 热能动力工程, 2004, 19(2): 124-126. |
Sun Q, Yang R C. Prediction of subcooled-boiling void fraction by means of a model based on a low flow-rate net vapor generation[J]. Journal of Engineering for Thermal Energy and Power, 2004, 19(2): 124-126. | |
17 | Rouhani S Z. Calculation of steam volume fraction in subcooled boiling[J]. Journal of Heat Transfer, 1968, 90(1): 158-164. |
18 | Chexal B, Lellouche G, Horowitz J, et al. A void fraction correlation for generalized applications[J]. Progress in Nuclear Energy, 1992, 27(4): 255-295. |
19 | Coddington P, Macian R. A study of the performance of void fraction correlations used in the context of drift-flux two-phase flow models[J]. Nuclear Engineering and Design, 2002, 215(3): 199-216. |
20 | McAdams W H. Vaporization inside horizontal tubes(Ⅱ): Benzene oil mixtures[J]. Trans. ASME, 1942, 64: 193-200. |
21 | Dukler A E, Wicks M, Cleveland R G. Frictional pressure drop in two-phase flow(Ⅱ): An approach through similarity analysis[J]. AIChE Journal, 1964, 10(1): 44-51. |
22 | Beattie D, Whalley P B. A simple two-phase frictional pressure drop calculation method[J]. International Journal of Multiphase Flow, 1982, 8(1): 83-87. |
23 | Awad M M, Muzychka Y S. Effective property models for homogeneous two-phase flows[J]. Experimental Thermal and Fluid Science, 2008, 33(1): 106-113. |
24 | Mishima K, Hibiki T. Some characteristics of air-water two-phase flow in small diameter vertical tubes[J]. International Journal of Multiphase Flow, 1996, 22(4): 703-712. |
25 | Lee H J, Lee S Y. Pressure drop correlations for two-phase flow within horizontal rectangular channels with small heights[J]. International Journal of Multiphase Flow, 2001, 27(5): 783-796. |
26 | Sun L, Mishima K. Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels[J]. International Journal of Multiphase Flow, 2009, 35(1): 47-54. |
27 | Zhang W, Hibiki T, Mishima K. Correlations of two-phase frictional pressure drop and void fraction in mini-channel[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/2/3): 453-465. |
28 | Chisholm D. Pressure gradients due to friction during the flow of evaporating two-phase mixtures in smooth tubes and channels[J]. International Journal of Heat and Mass Transfer, 1973, 16(2): 347-358. |
29 | Muller-Steinhagen H, Heck K. A simple friction pressure drop correlation for two-phase flow in pipes[J]. Chemical Engineering and Processing: Process Intensification, 1986, 20(6): 297-308. |
30 | Tran T N, Chyu M, Wambsganss M W, et al. Two-phase pressure drop of refrigerants during flow boiling in small channels: an experimental investigation and correlation development[J]. International Journal of Multiphase Flow, 2000, 26(11): 1739-1754. |
31 | Baburajan P K, Bisht G S, Gupta S K, et al. Measurement of subcooled boiling pressure drop and local heat transfer coefficient in horizontal tube under LPLF conditions[J]. Nuclear Engineering and Design, 2013, 255: 169-179. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[3] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[4] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[5] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[6] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[7] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[8] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[9] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[10] | 岳林静, 廖艺涵, 薛源, 李雪洁, 李玉星, 刘翠伟. 凹坑缺陷对厚孔板喉部空化流动特性影响研究[J]. 化工学报, 2023, 74(8): 3292-3308. |
[11] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[12] | 王海, 林宏, 王晨, 许浩洁, 左磊, 王军锋. 高压静电场强化多孔介质表面沸腾传热特性研究[J]. 化工学报, 2023, 74(7): 2869-2879. |
[13] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[14] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[15] | 何宣志, 何永清, 闻桂叶, 焦凤. 磁液液滴颈部自相似破裂行为[J]. 化工学报, 2023, 74(7): 2889-2897. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||