化工学报 ›› 2022, Vol. 73 ›› Issue (2): 643-652.DOI: 10.11949/0438-1157.20211106
收稿日期:
2021-08-09
修回日期:
2021-09-30
出版日期:
2022-02-05
发布日期:
2022-02-18
通讯作者:
刘起超
作者简介:
周云龙(1960—),男,博士,教授,基金资助:
Received:
2021-08-09
Revised:
2021-09-30
Online:
2022-02-05
Published:
2022-02-18
Contact:
Qichao LIU
摘要:
起伏振动下气液两相流摩擦压降的准确计算对海洋核动力的发展有重要意义。实验研究了不同振动和流动工况下30°倾斜上升管气液两相流摩擦压降的变化规律。结果表明,起伏振动下摩擦压降波动幅度和平均值显著增大。与静止状态相比,起伏振动下摩擦压降的多尺度熵值除泡状流外明显增大,且呈现大幅振荡现象,流动不稳定性更加显著。静止状态摩擦压降模型计算结果与实验值误差较大,现有模型对于起伏振动状态不适用。分析流动和振动参数对摩擦阻力系数的影响,发现其与均相雷诺数成反比,与振动幅值以及频率成正比。以大量实验数据为基础,建立了适用于起伏振动状态的摩擦阻力系数计算关系式,计算与实验结果吻合较好。
中图分类号:
周云龙, 刘起超. 起伏振动倾斜上升管气液两相流摩擦阻力分析与计算[J]. 化工学报, 2022, 73(2): 643-652.
Yunlong ZHOU, Qichao LIU. Analysis and calculation of friction resistance of gas-liquid flow in inclined riser pipe under fluctuating vibration[J]. CIESC Journal, 2022, 73(2): 643-652.
仪器 | 量程 | 精度 | 不确定度 |
---|---|---|---|
电磁流量计 | 0~10 m3/h | 0.5% | 0.94%~4.03% |
质量流量计 | 0~30 m3/h | 1% | 1.8%~5.59% |
差压变送器 | 0~25 kPa | 0.1% | 0.326%~2.002% |
表1 实验仪器及不确定度
Table 1 Experimental instrument and uncertainty
仪器 | 量程 | 精度 | 不确定度 |
---|---|---|---|
电磁流量计 | 0~10 m3/h | 0.5% | 0.94%~4.03% |
质量流量计 | 0~30 m3/h | 1% | 1.8%~5.59% |
差压变送器 | 0~25 kPa | 0.1% | 0.326%~2.002% |
模型 | 关系式 |
---|---|
McAdams[ | |
Beattie-Whalley[ | |
Duckler[ | |
Awad-Muzychka[ |
表2 两相动力黏度计算模型
Table 2 Calculation model of two phase dynamic viscosity
模型 | 关系式 |
---|---|
McAdams[ | |
Beattie-Whalley[ | |
Duckler[ | |
Awad-Muzychka[ |
模型 | EMA/% | 30%以内占比/% | |
---|---|---|---|
均相 模型 | McAdams | 27.86 | 47.85 |
Beattie-Whalley | 31.93 | 38.04 | |
Duckler | 31.76 | 34.36 | |
Awad-Muzychka | 33.45 | 30.06 | |
分相 模型 | Chisholm | 28.32 | 53.99 |
Sun and Mishima | 29.87 | 44.17 | |
Müller and Heck | 27.22 | 51.53 |
表3 静止管道不同模型计算值与实验值误差
Table 3 The errors between calculated values of different models and experimental values in static pipe
模型 | EMA/% | 30%以内占比/% | |
---|---|---|---|
均相 模型 | McAdams | 27.86 | 47.85 |
Beattie-Whalley | 31.93 | 38.04 | |
Duckler | 31.76 | 34.36 | |
Awad-Muzychka | 33.45 | 30.06 | |
分相 模型 | Chisholm | 28.32 | 53.99 |
Sun and Mishima | 29.87 | 44.17 | |
Müller and Heck | 27.22 | 51.53 |
1 | 阎昌琪. 气液两相流[M].哈尔滨: 哈尔滨工程大学出版社, 2007. |
Yan C Q. Gas and Liquid Two-Phase Flow [M]. Harbin: Harbin Engineering University Press, 2007. | |
2 | McAdams W H, Woods W K, Herman L C. Vaporization inside horizontal tubes (Ⅱ): Benzene oil mixture[J]. Trans. ASME, 1942, 64: 193-200. |
3 | Beattie D R H, Whalley P B. A simple two-phase frictional pressure drop calculation method[J]. International Journal of Multiphase Flow, 1982, 8(1): 83-87. |
4 | Duckler A E,Wicks M,Cleveland R G.Pressure drop and hold-up in two phase flow[J]. AIChE Journal,1964,10:38-51. |
5 | Awad M M, Muzychka Y S. Effective property models for homogeneous two-phase flows[J]. Experimental Thermal and Fluid Science, 2008, 33(1): 106-113. |
6 | Lin S, Kwok C C K, Li R Y, et al. Local frictional pressure drop during vaporization of R-12 through capillary tubes[J]. International Journal of Multiphase Flow, 1991, 17(1): 95-102. |
7 | Lockhart R W, Martinelli R C. Proposed correlation of data for isothermal two-phase two-component flow in pipes[J].Chemical Engineering Progress,1949,45:39–45. |
8 | Chisholm D. A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow[J]. International Journal of Heat and Mass Transfer, 1967, 10(12): 1767-1778. |
9 | Sun L C, Mishima K. Evaluation analysis of prediction methods for two-phase flow pressure drop in mini-channels[J]. International Journal of Multiphase Flow, 2009, 35(1): 47-54. |
10 | Müller-Steinhagen H, Heck K. A simple friction pressure drop correlation for two-phase flow in pipes[J]. Chemical Engineering and Processing: Process Intensification, 1986, 20(6): 297-308. |
11 | 高璞珍, 庞凤阁, 王兆祥. 核动力装置一回路冷却剂受海洋条件影响的数学模型[J]. 哈尔滨工程大学学报, 1997, 18(1): 24-27. |
Gao P Z, Pang F G, Wang Z X. Mathematical model of primary coolant in nuclear power plant influenced by ocean conditions[J]. Journal of Harbin Engineering University, 1997, 18(1): 24-27. | |
12 | Xing D C, Yan C Q, Sun L C, et al. Effect of rolling motion on single-phase laminar flow resistance of forced circulation with different pump head[J]. Annals of Nuclear Energy, 2013, 54: 141-148. |
13 | Xing D C, Yan C Q, Sun L C, et al. Effects of rolling on characteristics of single-phase water flow in narrow rectangular ducts[J]. Nuclear Engineering and Design, 2012, 247: 221-229. |
14 | 曹夏昕, 阎昌琪, 孙立成, 等. 摇摆状态下竖直管内单相水阻力特性实验研究[J]. 核动力工程, 2007, 28(3): 51-55. |
Cao X X, Yan C Q, Sun L C, et al. Pressure drop characteristics of single-phase flow in vertical rolling pipes[J]. Nuclear Power Engineering, 2007, 28(3): 51-55. | |
15 | 张金红, 阎昌琪, 曹夏昕, 等. 摇摆状态下水平管中单相水的摩擦阻力实验研究[J]. 核动力工程, 2008, 29(4): 44-49. |
Zhang J H, Yan C Q, Cao X X, et al. Experimental study on single-phase liquid friction factor in rolling horizontal pipe[J]. Nuclear Power Engineering, 2008, 29(4): 44-49. | |
16 | Yu Z T, Tan S C, Yuan H S, et al. Experimental investigation on flow instability of forced circulation in a mini-rectangular channel under rolling motion[J]. International Journal of Heat and Mass Transfer, 2016, 92: 732-743. |
17 | 张金红. 摇摆状态下气水两相流流型及阻力特性研究[D]. 哈尔滨: 哈尔滨工程大学, 2009. |
Zhang J H. Study on flow pattern and resistance characteristics of air-water two-phase flow in rolling motion[D]. Harbin: Harbin Engineering University, 2009. | |
18 | 栾锋. 摇摆对水平管内气水两相流影响的研究[D]. 哈尔滨: 哈尔滨工程大学, 2009. |
Luan F. Research on effect of rolling condition on gas-water flow in horizontal tubes[D]. Harbin: Harbin Engineering University, 2009. | |
19 | 刘传成, 阎昌琪, 孙立成, 等. 摇摆运动下矩形窄通道内摩擦压降特性研究[J]. 原子能科学技术, 2013, 47(4): 576-581. |
Liu C C, Yan C Q, Sun L C, et al. Characteristics of frictional pressure drop in narrow rectangular channel in rolling motion[J]. Atomic Energy Science and Technology, 2013, 47(4): 576-581. | |
20 | Jin G Y, Yan C Q, Sun L C, et al. Effect of rolling motion on transient flow resistance of two-phase flow in a narrow rectangular duct[J]. Annals of Nuclear Energy, 2014, 64: 135-143. |
21 | Li S L, Cai W H, Jiang Y Q, et al. The pressure drop and heat transfer characteristics of condensation flow with hydrocarbon mixtures in a spiral pipe under static and heaving conditions[J]. International Journal of Refrigeration, 2019, 103: 16-31. |
22 | Iliuta I, Larachi F. CO2 and H2S absorption by MEA solution in packed-bed columns under inclined and heaving motion conditions — hydrodynamics and reactions performance for marine applications[J]. International Journal of Greenhouse Gas Control, 2018, 79: 1-13. |
23 | Pendyala R, Jayanti S, Balakrishnan A R. Flow and pressure drop fluctuations in a vertical tube subject to low frequency oscillations[J]. Nuclear Engineering and Design, 2008, 238(1): 178-187. |
24 | Li J R, Hu H T, Xie Y, et al. Two-phase flow boiling characteristics in plate-fin channels at offshore conditions[J]. Applied Thermal Engineering, 2021, 187: 116595. |
25 | Hong G, Yan X, Yang Y H, et al. Experimental study on onset of nucleate boiling in narrow rectangular channel under static and heaving conditions[J]. Annals of Nuclear Energy, 2012, 39(1): 26-34. |
26 | Yu S C, Chen J, Mi X G, et al. Experimental and numerical investigation of two-phase flow outside tube bundle of liquefied natural gas spiral wound heat exchangers under offshore conditions[J]. Applied Thermal Engineering, 2019, 152: 103-112. |
27 | 周云龙, 刘起超, 汪俊超. 起伏振动下倾斜管内单相流流动阻力特性分析[J]. 原子能科学技术, 2020, 54(3): 421-428. |
Zhou Y L, Liu Q C, Wang J C. Analysis of flow resistance characteristic of single-phase flow in inclined pipe under undulating vibration[J]. Atomic Energy Science and Technology, 2020, 54(3): 421-428. | |
28 | 周云龙, 常赫, 刘起超. 非线性振动下水平通道气液两相流动[J]. 化工学报, 2019, 70(7): 2512-2519. |
Zhou Y L, Chang H, Liu Q C. Gas-liquid two-phase flow in horizontal channel under nonlinear vibration[J]. CIESC Journal, 2019, 70(7): 2512-2519. | |
29 | Zhou Y L, Chang H, Lv Y. Gas-liquid two-phase flow in a horizontal channel under nonlinear oscillation: flow regime, frictional pressure drop and void fraction[J]. Experimental Thermal and Fluid Science, 2019, 109: 109852. |
30 | 张华高. 船舶静稳性与航行安全博弈[J]. 中国水运, 2015(9): 56. |
Zhang H G. Game between ship static stability and navigation safety[J].China Water Transportation, 2015(9): 56. | |
31 | 钱政, 贾果欣. 误差理论与数据处理[M]. 北京: 科学出版社, 2013. |
Qian Z, Jia G X. Error Theory and Data Processing [M]. Beijing: Science Press, 2013. |
[1] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[2] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[3] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[4] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[5] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[6] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[7] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[8] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[9] | 尹刚, 李伊惠, 何飞, 曹文琦, 王民, 颜非亚, 向禹, 卢剑, 罗斌, 卢润廷. 基于KPCA和SVM的铝电解槽漏槽事故预警方法[J]. 化工学报, 2023, 74(8): 3419-3428. |
[10] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[11] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[12] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[13] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[14] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[15] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||