化工学报 ›› 2020, Vol. 71 ›› Issue (3): 983-996.DOI: 10.11949/0438-1157.20190848
收稿日期:
2019-07-20
修回日期:
2019-10-14
出版日期:
2020-03-05
发布日期:
2020-03-05
通讯作者:
李玉星
基金资助:
Shuang LI1,Yuxing LI1(),Dongxu WANG1,Quan WANG2
Received:
2019-07-20
Revised:
2019-10-14
Online:
2020-03-05
Published:
2020-03-05
Contact:
Yuxing LI
摘要:
利用室内实验装置,对上倾管内高黏油气两相流的流型和压降特性进行了实验研究。实验中观测到7种流型,得到了不同工况下的压力波动信号及压降值。实验结果表明,由于液相黏度的影响,上倾管内大部分流型的过渡边界向流型图的左侧偏移,且黏度越大偏移程度越大。将流型数据与Barnea流型判断模型进行对比,发现在高黏度时两者误差较大。根据压降数据得出,由于高黏度时液滴的附着作用增强,在气液表观速度均较小时,会出现黏度增加而压降却减小的现象。验证了OLGA模型和Zhang模型对于压降的计算精度,发现高黏度时模型的计算误差远大于低黏度情况。通过高黏度闭合关系式对Zhang模型进行修正,结果表明可以显著地提高其计算精度。
中图分类号:
李爽, 李玉星, 王冬旭, 王权. 上倾管高黏油气两相流型及压降特性[J]. 化工学报, 2020, 71(3): 983-996.
Shuang LI, Yuxing LI, Dongxu WANG, Quan WANG. Flow patterns and pressure drop characteristics on high-viscosity oil and gas two-phase flow in upward pipe[J]. CIESC Journal, 2020, 71(3): 983-996.
图7 60°倾角时压降随表观速度的变化规律
Fig.7 Variation of pressure drop with superficial velocity at 60° angle ◇ w s l =0.03 m·s-1;+ w s l =0.05 m·s-1;○ w s l =0.08 m·s-1;□ w s l =0.15 m·s-1;△ w s l =0.3 m·s-1;× w s l =0.6 m·s-1
液相黏度/ (mPa·s) | ε 1/% | ε 2/(Pa·m-1) | ||||
---|---|---|---|---|---|---|
OLGA模型 | Zhang模型 | 修正后的Zhang模型 | OLGA模型 | Zhang模型 | 修正后的Zhang模型 | |
1 | 12.96 | 14.66 | 27.49 | 420 | 473 | 909 |
80 | 19.79 | 18.32 | 18.76 | 676 | 631 | 786 |
314 | 38.15 | 46.55 | 16.15 | 2142 | 2718 | 889 |
606 | 39.79 | 50.10 | 14.59 | 2566 | 3518 | 1052 |
表1 三种模型压力梯度计算结果的误差统计
Table 1 Error statistics of pressure gradient from this three models
液相黏度/ (mPa·s) | ε 1/% | ε 2/(Pa·m-1) | ||||
---|---|---|---|---|---|---|
OLGA模型 | Zhang模型 | 修正后的Zhang模型 | OLGA模型 | Zhang模型 | 修正后的Zhang模型 | |
1 | 12.96 | 14.66 | 27.49 | 420 | 473 | 909 |
80 | 19.79 | 18.32 | 18.76 | 676 | 631 | 786 |
314 | 38.15 | 46.55 | 16.15 | 2142 | 2718 | 889 |
606 | 39.79 | 50.10 | 14.59 | 2566 | 3518 | 1052 |
1 | 李玉星,冯叔初 .油气水多相管流[M].东营:中国石油大学出版社,2011:1. |
Li Y X , Feng S C .Oil, Gas and Water Multiphase Flow in Pipelines[M].Dongying:China University of Petroluem Publication,2011:1. | |
2 | 罗小明,何利民,吕宇玲 .水平管气液两相段塞流的波动特性[J].化工学报,2008,59(11):2781-2786. |
Luo X M , He L M , Lv Y L .Fluctuation characteristics of gas-liquid two-phase slug flow in horizontal pipeline[J].Journal of Chemical Industry and Engineering (China),2008,59(11):2781-2786. | |
3 | 王鑫,董传帅,张晓凌,等 .空气-水段塞流冷却传热与相界面分布实验研究[J].中国科学院大学学报,2017,34(2):232-236. |
Wang X , Dong C S , Zhang X L ,et al .Investigation of heat transfer and interfacial distribution characteristic of air-water slug flow in cooling process[J].Journal of University of Chinese Academy of Sciences,2017,34(2):232-236. | |
4 | 何利民,郭烈锦,陈学俊 .测量水平管道液塞速度和长度的差压波动分析法[J].化工学报,2003,54(2):192-198. |
He L M , Guo L J , Chen X J .Measurement of slug velocity and length in horizontal pipeline by means of differential pressure fluctuation analysis[J].Journal of Chemical Industry and Engineering (China),2003,54(2):192-198. | |
5 | Zhao Y , Yeung H , Zorgani E E ,et al .High viscosity effects on characteristics of oil and gas two-phase flow in horizontal pipes[J].Chemical Engineering Science,2013,95:343-352. |
6 | Baba Y D , Aliyu A M , Archibong A E ,et al .Slug length for high viscosity oil-gas flow in horizontal pipes: experiments and prediction[J].Journal of Petroleum Science and Engineering,2018,165:397-411. |
7 | Nadler M , Mewes D .Effect of the liquid viscosity on the phase distribution in horizontal gas-liquid slug flow[J].International Journal of Multiphase Flow,1995,21(2):253-266. |
8 | Mata C , Pereyra E , Trallero J L ,et al .Stability of stratified gas-liquid flows[J].International Journal of Multiphase Flow,2002,28(8):1249-1268. |
9 | Matsubara H , Naito K .Effect of liquid viscosity on flow patterns of gas-liquid two-phase flow in a horizontal pipe[J].International Journal of Multiphase Flow,2011,37(10):1277-1281. |
10 | Foletti C , Farisè S , Grassi B ,et al .Experimental investigation on two-phase air/high-viscosity-oil flow in a horizontal pipe[J].Chemical Engineering Science,2011,66(23):5968-5975. |
11 | Furukawa T , Fukano T .Effects of liquid viscosity on flow patterns in vertical upward gas-liquid two-phase flow[J].International Journal of Multiphase Flow,2001,27(6):1109-1126. |
12 | Hlaing D N , Sirivat A , Siemanond K ,et al .Vertical two-phase flow regimes and pressure gradients: effect of viscosity[J].Experimental Thermal and Fluid Science,2007,31(6):567-577. |
13 | Al-Ruhaimani F , Pereyra E , Sarica C .Experimental analysis and model evaluation of high-liquid-viscosity two-phase upward vertical pipe flow[J].SPE Production & Operation,2017,22(3):712-735. |
14 | Colmenares J , Ortega P , Padrino J ,et al .Slug flow model for the prediction of pressure drop for high viscosity oils in a horizontal pipeline[C]//SPE International Thermal Operations and Heavy Oil Symposium.Venezuela,2001. |
15 | Kago T , Saruwatari T , Kashima M ,et al .Heat transfer in horizontal plug and slug flow for gas-liquid and gas-slurry systems[J].Journal of Chemical Engineering of Japan,1986,19(2):125-131. |
16 | Gokcal B .Effects of high oil viscosity on two-phase oil-gas flow behavior in horizontal pipes[D].Tulsa:The University of Tulsa,2005. |
17 | Gokcal B , Al-Sarkhi A , Sarica C ,et al .Prediction of slug frequency for high-viscosity oils in horizontal pipes[J].SPE Projects Facilities & Construction,2010,5(3):136-144. |
18 | Gokcal B , Al-Sarkhi A , Sarica C .Effects of high oil viscosity on drift velocity for horizontal and upward inclined pipes[J].SPE Projects,Facilities & Construction,2009,4(2):32-40. |
19 | Jeyachandra B C .Effects of pipe inclination on on flow characteristics of high viscosity oil-gas two-phase flow[D].Tulsa:The University of Tulsa,2011. |
20 | Jeyachandra B C , Gokcal B , Al-Sarkhi A ,et al .Drift-velocity closure relationships for slug two-phase high-viscosity oil flow in pipes[J].SPE Journal,2012,17(2):593-601. |
21 | Brito R , Pereyra E , Sarica C .Effect of medium oil viscosity on two-phase oil gas flow behavior in horizontal pipes[C]//Offshore Technology Conference.Houston,2013. |
22 | Rosa E S , Netto J .Viscosity effect and flow development in horizontal slug flows[C]//Yokohama: International Conference on Multiphase Flow,2004. |
23 | Al-Safran E M , Gokcal B , Sarica C .Investigation and prediction of high-viscosity liquid effect on two-phase slug length in horizontal pipelines[J].SPE Production & Operations,2013,28 (3):296-305. |
24 | Al-Safran E , Gokcal B , Sarica C .High viscosity liquid effect on two-phase slug length in horizontal pipes[C]//International Conference on Multiphase Production Technology.Cannes,2011. |
25 | Al-Safran E M .Probabilistic modeling of slug frequency in gas/liquid pipe flow using Poisson probability theory[J].Journal of Petroleum Science and Engineering,2016,138:88-96. |
26 | 许晶禹,吴应湘,李东晖 .液相物性对气液两相管流流型和压降影响的研究[J].应用基础与工程科学学报,2005,13(2):111-119. |
Xu J Y , Wu Y X , Li D H .The effects of liquid properties on flow pattern transition and pressure drop during gas-liquid pipe flow[J].Journal of Basic Science and Engineering,2005,13(2):111-119. | |
27 | 徐孝轩,刘德生,宫敬,等 .液相黏度对水平管气液两相流型的影响[J].油气储运,2013,32(3):236-240. |
Xu X X , Liu D S , Gong J ,et al .The influence of liquid viscosity on gas-liquid two-phase flow in horizontal pipe[J].Oil and Gas Storage and Transportation,2013,32(3):236-240. | |
28 | Baba Y D , Aliyu A M , Archibong A E ,et al .Study of high viscous multiphase phase flow in a horizontal pipe[J].Heat and Mass Transfer,2017,54(3):651-669. |
29 | McNeil D A , Stuart A D .The effects of a highly viscous liquid phase on vertically upward two-phase flow in a pipe[J].International Journal of Multiphase Flow,2003,29(9):1523-1549. |
30 | Spisak W , Idzik J .Gas hold-up in stalactite and slug flows with highly viscous liquids[J].The Chemical Engineering Journal,1994,56(1):79-85. |
31 | Barnea D .A unified model for predicting flow-pattern transitions for the whole range of pipe inclinations[J].International Journal of Multiphase Flow,1987,13(1):1-12. |
32 | Zhang H Q , Wang Q , Sarica C ,et al .Unified model for gas-liquid pipe flowvia slug dynamics (Ⅰ): Model development[J].Journal of Energy Resources Technology,2003,125(4):266-273. |
33 | Kora C , Sarica C , Zhang H ,et al .Effects of high oil viscosity on slug liquid holdup in horizontal pipes[C]//Canadian Unconventional Resources Conference.Calagry,2011. |
34 | Wang S .High-viscosity oil/water/gas flow in horizontal and upward vertical pipes: slug liquid holdup modeling[D].Tulsa:The University of Tulsa,2012. |
35 | Zhao Y , Yeung H , Lao L .High liquid viscosity effects on wall and interfacial shear stresses in horizontal liquid-gas flows[C]//8th International Conference on Multiphase Flow.Jeju,2013:26-31. |
36 | Bendiksen K H .An experimental investigation of the motion of long bubbles in inclined tubes[J].International Journal of Multiphase Flow,1984,10(4):467-483. |
37 | Moreiras J , Pereyra E , Sarica C ,et al .Unified drift velocity closure relationship for large bubble rising in stagnant viscous fluids in pipes[J].Journal of Petroleum Science and Engineering,2014,124:359-366. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[4] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[5] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[6] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[7] | 高金明, 郭玉娇, 鄂承林, 卢春喜. 一种封闭罩内顺流多旋臂气液分离器的分离特性研究[J]. 化工学报, 2023, 74(7): 2957-2966. |
[8] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[9] | 刘起超, 周云龙, 陈聪. 起伏振动垂直上升管气液两相流截面含气率分析与计算[J]. 化工学报, 2023, 74(6): 2391-2403. |
[10] | 董鑫, 单永瑞, 刘易诺, 冯颖, 张建伟. 非牛顿流体气泡羽流涡特性数值模拟研究[J]. 化工学报, 2023, 74(5): 1950-1964. |
[11] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[12] | 白剑钊, 郭子轩, 王德武, 刘燕, 王若瑾, 唐猛, 张少峰. 摇摆对气液并流模式立体旋流筛板压降的影响研究[J]. 化工学报, 2023, 74(2): 707-720. |
[13] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[14] | 盛林, 昌宇, 邓建, 骆广生. 阶梯式T型微通道内有序气泡群的形成和流动特性研究[J]. 化工学报, 2023, 74(1): 416-427. |
[15] | 张童, 杨扬, 叶丁丁, 陈蓉, 朱恂, 廖强. 催化剂分布对可渗透阳极微流体燃料电池性能特性影响的研究[J]. 化工学报, 2022, 73(9): 4156-4162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||