化工学报 ›› 2020, Vol. 71 ›› Issue (6): 2510-2529.DOI: 10.11949/0438-1157.20200084
收稿日期:
2020-01-19
修回日期:
2020-04-06
出版日期:
2020-06-05
发布日期:
2020-06-05
通讯作者:
卢兴
作者简介:
叶小琴(1992—),女,博士研究生,基金资助:
Xiaoqin YE(),Zhiyue WEN,Wangqiang SHEN,Xing LU()
Received:
2020-01-19
Revised:
2020-04-06
Online:
2020-06-05
Published:
2020-06-05
Contact:
Xing LU
摘要:
有机无机杂化钙钛矿太阳能电池自2009年出现以来,经过短短十余年的发展,光电转化效率已提升到24%以上,引起了广泛的关注。富勒烯材料具有较高电子迁移率、可调控的能级以及可低温成膜等特性,在钙钛矿太阳能电池中可以用于电子传输层、钙钛矿层添加剂、界面修饰层,甚至还能够在空穴传输层中发挥作用。这些应用不仅提高了电池的光电转化效率和稳定性,还能有效降低电池的磁滞效应。本综述就富勒烯材料在钙钛矿太阳能电池各组成部分的应用进行了详细的介绍,并总结了通过修饰富勒烯分子结构提高电池性能的基本规律,这些结果对推动富勒烯材料在钙钛矿太阳能电池领域的应用有重要意义。
中图分类号:
叶小琴, 闻沚玥, 沈王强, 卢兴. 富勒烯材料在钙钛矿太阳能电池中的应用[J]. 化工学报, 2020, 71(6): 2510-2529.
Xiaoqin YE, Zhiyue WEN, Wangqiang SHEN, Xing LU. Applications of fullerene materials in perovskite solar cells[J]. CIESC Journal, 2020, 71(6): 2510-2529.
1 | Green M A, Ho-Baillie A, Snaith H J. The emergence of perovskite solar cells[J]. Nature Photonics, 2014, 8(7): 506-514. |
2 | Zhao Z R, Sun W H, Li Y L, et al. Simplification of device structures for low-cost, high-efficiency perovskite solar cells[J]. J. Mater. Chem. A, 2017, 5(10): 4756-4773. |
3 | Noh J H, Im S H, Heo J H, et al. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells[J]. Nano Lett., 2013, 13(4): 1764-1769. |
4 | Kojima A, Teshima K, Shirai Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17): 6050-6051. |
5 | Stoumpos C C, Malliakas C D, Kanatzidis M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorg. Chem., 2013, 52(15): 9019-9038. |
6 | Xing G C, Mathews N, Sun S Y, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342(6156): 344-347. |
7 | Green M A, Dunlop E D, Levi D H, et al. Solar cell efficiency tables (version 54) [J]. Prog. Photovolt. Res. Appl., 2019, 27, 565-575. |
8 | Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Scientific Reports, 2012, 2(591):1-7. |
9 | Reed C A, Bolskar R D. Discrete fulleride anions and fullerenium cations[J]. Chem. Rev., 2000, 100(3): 1075-1120. |
10 | Imahori H, Hagiwara K, Akiyama T, et al. The small reorganization energy of C60 in electron transfer[J]. Chemical Physics Letters, 1996, 263(3): 545-550. |
11 | Frankevich E, Maruyama Y, Ogata H. Mobility of charge carriers in vapor-phase grown C60 single crystal[J]. Chemical Physics Letters, 1993, 214(1): 39-44. |
12 | Jeng J Y, Chiang Y F, Lee M H, et al. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells[J]. Adv. Mater., 2013, 25(27): 3727-3732. |
13 | Liang P W, Chueh C C, Williams S T, et al. Roles of fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells[J]. Adv. Energy Mater., 2015, 5(10):1402321. |
14 | Xue Q F, Bai Y, Liu M Y, et al. Dual interfacial modifications enable high performance semitransparent perovskite solar cells with large open circuit voltage and fill factor[J]. Adv. Energy Mater., 2017, 7(9): 1602333. |
15 | Yang D, Zhang X R, Wang K, et al. Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers[J]. Nano Lett., 2019, 19(5): 3313-3320. |
16 | Völker S F, Vallés-Pelarda M, Pascual J, et al. Fullerene-based materials as hole-transporting/electron-blocking layers: applications in perovskite solar cells[J]. Chem. Eur. J., 2018, 24(34): 8524-8529. |
17 | Wang Q, Shao Y C, Dong Q F, et al. Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process[J]. Energy Environ. Sci., 2014, 7(7): 2359-2365. |
18 | Gil-Escrig L, Momblona C, Sessolo M, et al. Fullerene imposed high open-circuit voltage in efficient perovskite based solar cells[J]. J. Mater. Chem. A, 2016, 4(10): 3667-3672. |
19 | Wu C G, Chiang C H, Chang S H. A perovskite cell with a record-high-Voc of 1.61 V based on solvent annealed CH3NH3PbBr3/ICBA active layer[J]. Nanoscale, 2016, 8(7): 4077-4085. |
20 | Xing Y, Sun C, Yip H L, et al. New fullerene design enables efficient passivation of surface traps in high performance p-i-n heterojunction perovskite solar cells[J]. Nano Energy, 2016, 26: 7-15. |
21 | Chiang C H, Tseng Z L, Wu C G. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a (2/1)-step spin-coating process[J]. J. Mater. Chem. A, 2014, 2(38): 15897-15903. |
22 | Dai S M, Zhang X, Chen W Y, et al. Formulation engineering for optimizing ternary electron acceptors exemplified by isomeric PC71BM in planar perovskite solar cells[J]. J. Mater. Chem. A, 2016, 4(48): 18776-18782. |
23 | Castro E, Zavala G, Seetharaman S, et al. Impact of fullerene derivative isomeric purity on the performance of inverted planar perovskite solar cells[J]. J. Mater. Chem. A, 2017, 5(36): 19485-19490. |
24 | Tian C B, Kochiss K, Castro E, et al. A dimeric fullerene derivative for efficient inverted planar perovskite solar cells with improved stability[J]. J. Mater. Chem. A, 2017, 5(16): 7326-7332. |
25 | Khadka D B, Shirai Y, Yanagida M, et al. Tailoring the open-circuit voltage deficit of wide-band-gap perovskite solar cells using alkyl chain-substituted fullerene derivatives[J]. ACS Appl. Mater. Interfaces, 2018, 10(26): 22074-22082. |
26 | Bai Y, Yu H, Zhu Z L, et al. High performance inverted structure perovskite solar cells based on a PCBM:polystyrene blend electron transport layer[J]. J. Mater. Chem. A, 2015, 3(17): 9098-9102. |
27 | Chang J W, Wang Y C, Song C J, et al. Carboxylic ester-terminated fulleropyrrolidine as an efficient electron transport material for inverted perovskite solar cells[J]. J. Mater. Chem. C, 2018, 6(26): 6982-6987. |
28 | Shao S Y, Adbu-Aguye M, Qiu L, et al. Elimination of the light soaking effect and performance enhancement in perovskite solar cells using a fullerene derivative[J]. Energy Environ. Sci., 2016, 9(7): 2444-2452. |
29 | Li B R, Zhen J M, Wan Y Y, et al. Anchoring fullerene onto perovskite film via grafting pyridine toward enhanced electron transport in high-efficiency solar cells[J]. ACS Appl. Mater. Interfaces, 2018, 10(38): 32471-32482. |
30 | Meng X Y, Bai Y, Xiao S, et al. Designing new fullerene derivatives as electron transporting materials for efficient perovskite solar cells with improved moisture resistance[J]. Nano Energy, 2016, 30: 341-346. |
31 | Tian C B, Castro E, Betancourt-Solis G, et al. Fullerene derivative with a branched alkyl chain exhibits enhanced charge extraction and stability in inverted planar perovskite solar cells[J]. New J. Chem., 2018, 42(4): 2896-2902. |
32 | Luo Z H, Wu F, Zhang T, et al. Designing perylene diimide/fullerene hybrid as effective electron transporting material in inverted perovskite solar cells with enhanced efficiency and stability [J]. Angew. Chem. Int. Ed., 2019, 58(25): 8520-8525. |
33 | Yao K, Leng S F, Liu Z L, et al. Fullerene-anchored core-shell ZnO nanoparticles for efficient and stable dual-sensitized perovskite solar cells[J]. Joule, 2019, 3(2): 417-431. |
34 | Wojciechowski K, Leijtens T, Siprovas S, et al. C60 as an efficient n-type compact layer in perovskite solar cells[J]. J. Phys. Chem. Lett., 2015, 6(12): 2399-2405. |
35 | Liu C, Yang Y, Ding Y, et al. High-efficiency and UV-stable planar perovskite solar cells using a low-temperature, solution-processed electron-transport layer[J]. ChemSusChem, 2018, 11(7): 1232-1237. |
36 | Scharber M C, Mühlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency[J]. Adv. Mater., 2006, 18(6): 789-794. |
37 | Rand B P, Burk D P, Forrest S R. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells[J]. Phys. Rev. B, 2007, 75(11):115327. |
38 | Lenes M, Wetzelaer G A, Kooistra F B, et al. Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells[J]. Adv. Mater., 2008, 20(11): 2116-2119. |
39 | He Y J, Chen H Y, Hou J H, et al. Indene-C60 bisadduct: a new acceptor for high-performance polymer solar cells[J]. J. Am. Chem. Soc., 2010, 132(4): 1377-1382. |
40 | Zhao G J, He Y J, Li Y F. 6.5% efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization[J]. Adv. Mater.,2010, 22(39): 4355-4358. |
41 | Umeyama T, Imahori H. Isomer effects of fullerene derivatives on organic photovoltaics and perovskite solar cells[J]. Acc. Chem. Res., 2019, 52(8): 2046-2055. |
42 | Shao Y C, Yuan Y B, Huang J S. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells[J]. Nature Energy, 2016, 1: 1-6. |
43 | Xu W Z, Yao X, Meng T Y, et al. Perovskite hybrid solar cells with a fullerene derivative electron extraction layer[J]. J. Mater. Chem. C, 2017, 5(17): 4190-4197. |
44 | Kuang C Y, Tang G, Jiu T G, et al. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells[J]. Nano Lett., 2015, 15(4): 2756-2762. |
45 | Kim S S, Bae S, Jo W H. Performance enhancement of planar heterojunction perovskite solar cells by n-doping of the electron transporting layer[J]. Chem. Commun., 2015, 51(98): 17413-17416. |
46 | Kakavelakis G, Maksudov T, Konios D, et al. Efficient and highly air stable planar inverted perovskite solar cells with reduced graphene oxide doped PCBM electron transporting layer[J]. Adv. Energy Mater., 2017, 7(7): 1602120. |
47 | Bi D Q, Yi C Y, Luo J S, et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%[J]. Nature Energy, 2016, 1(10): 16142. |
48 | Song X, Wang W W, Sun P, et al. Additive to regulate the perovskite crystal film growth in planar heterojunction solar cells[J]. Appl. Phys. Lett., 2015, 106(3): 033901. |
49 | Chen Y H, Li N X, Wang L G, et al. Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells[J]. Nature Communications, 2019, 10(1): 1112. |
50 | Shao Y C, Xiao Z G, Bi C, et al. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells[J]. Nature Communications, 2014, 5(1): 5784. |
51 | Collavini S, Kosta I, Völker S F, et al. Efficient regular perovskite solar cells based on pristine [70]fullerene as electron-selective contact[J]. ChemSusChem, 2016, 9(11): 1263-1270. |
52 | Lin H S, Jeon I, Xiang R, et al. Achieving high efficiency in solution-processed perovskite solar cells using C60/C70 mixed fullerenes[J]. ACS Appl. Mater. Interfaces, 2018, 10(46): 39590-39598. |
53 | Ryu S, Seo J, Shin S S, et al. Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature[J]. J. Mater. Chem. A, 2015, 3(7): 3271-3275. |
54 | Kim J H, Chueh C C, Williams S T, et al. Room-temperature, solution-processable organic electron extraction layer for high-performance planar heterojunction perovskite solar cells[J]. Nanoscale, 2015, 7(41): 17343-17349. |
55 | Wang Y C, Li X D, Zhu L P, et al. Efficient and hysteresis-free perovskite solar cells based on a solution processable polar fullerene electron transport layer[J]. Adv. Energy Mater., 2017. 7(21): 1701144. |
56 | Liu H R, Li S H, Deng L L, et al. Pyridine-functionalized fullerene electron transport layer for efficient planar perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2019, 11(27): 23982-23989. |
57 | Qiu W, Bastos J P, Dasgupta S, et al. Highly efficient perovskite solar cells with crosslinked PCBM interlayers[J]. J. Mater. Chem. A, 2017, 5(6): 2466-2472. |
58 | Wojciechowski K, Ramirez I, Gorisse T, et al. Cross-linkable fullerene derivatives for solution-processed n-i-p perovskite solar cells [J]. ACS Energy Lett., 2016, 1(4): 648-653. |
59 | Song S, Hill R, Choi K, et al. Surface modified fullerene electron transport layers for stable and reproducible flexible perovskite solar cells[J]. Nano Energy, 2018, 49: 324-332. |
60 | Ke W J, Zhao D W, Grice C R, et al. Efficient planar perovskite solar cells using room-temperature vacuum-processed C60 electron selective layers[J]. J. Mater. Chem. A, 2015, 3(35): 17971-17976. |
61 | Yoon H, Kang S M, Lee J K, et al. Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency[J]. Energy Environ. Sci., 2016, 9(7): 2262-2266. |
62 | Zhao D W, Ke W J, Grice C R, et al. Annealing-free efficient vacuum-deposited planar perovskite solar cells with evaporated fullerenes as electron-selective layers[J]. Nano Energy, 2016, 19: 88-97. |
63 | Chen L C, Lin Y S, Tang P W, et al. Unraveling current hysteresis effects in regular-type C60-CH3NH3PbI3 heterojunction solar cells[J]. Nanoscale, 2017, 9(45): 17802-17806. |
64 | Xu J X, Buin A, Ip A H, et al. Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes[J]. Nature Communications, 2015, 6: 7081. |
65 | Chiang C H, Wu C G. Bulk heterojunction perovskite-PCBM solar cells with high fill factor[J]. Nature Photonics, 2016, 10(3): 196-200. |
66 | Ran C X, Chen Y H, Gao W Y, et al. One-dimensional (1D) [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanorods as an efficient additive for improving the efficiency and stability of perovskite solar cells[J]. J. Mater. Chem. A, 2016, 4(22): 8566-8572. |
67 | Liu C, Li W Z, Li H L, et al. C60 additive-assisted crystallization in CH3NH3Pb0.75Sn0.25I3 perovskite solar cells with high stability and efficiency[J]. Nanoscale, 2017, 9(37): 13967-13975. |
68 | Chen H B, Ding X H, Pan X, et al. Incorporating C60 as nucleation sites optimizing PbI2 films to achieve perovskite solar cells showing excellent efficiency and stability via vapor-assisted deposition method[J]. ACS Appl. Mater. Interfaces, 2018, 10(3): 2603-2611. |
69 | Pascual J, Kosta I, Tuyen Ngo T, et al. Electron transport layer-free solar cells based on perovskite-fullerene blend films with enhanced performance and stability[J]. ChemSusChem, 2016, 9(18): 2679-2685. |
70 | Wu F, Chen T, Yue X, et al. Enhanced photovoltaic performance and reduced hysteresis in perovskite-ICBA-based solar cells[J]. Organic Electronics, 2018, 58: 6-11. |
71 | Wang K, Liu C, Du P C, et al. Bulk heterojunction perovskite hybrid solar cells with large fill factor[J]. Energy Environ. Sci., 2015. 8(4): 1245-1255. |
72 | Liu X, Lin F, Chueh C C, et al. Fluoroalkyl-substituted fullerene/perovskite heterojunction for efficient and ambient stable perovskite solar cells[J]. Nano Energy, 2016, 30: 417-425. |
73 | Xu G Y, Xue R M, Chen W J, et al. New strategy for two-step sequential deposition: incorporation of hydrophilic fullerene in second precursor for high-performance p-i-n planar perovskite solar cells[J]. Adv. Energy Mater., 2018, 8(12): 1703054. |
74 | Qin Q Q, Zhang Z B, Cai Y Y, et al. Improving the performance of low-temperature planar perovskite solar cells by adding functional fullerene end-capped polyethylene glycol derivatives[J]. Journal of Power Sources, 2018, 396: 49-56. |
75 | Tian C B, Zhang S J, Mei A Y, et al. A multifunctional bis-adduct fullerene for efficient printable mesoscopic perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2018, 10(13): 10835-10841. |
76 | Wu Y Z, Yang X D, Chen W, et al. Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering[J]. Nature Energy, 2016, 1(11): 16148. |
77 | Rajagopal A, Liang P W, Chueh C C, et al. Defect passivation via a graded fullerene heterojunction in low-bandgap Pb-Sn binary perovskite photovoltaics[J]. ACS Energy Lett., 2017, 2(11): 2531-2539. |
78 | Zhang F, Shi W D, Luo J S, et al. Isomer-pure bis-PCBM-assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability[J]. Adv. Mater., 2017, 29(17): 1606806. |
79 | Abrusci A, Stranks S D, Docampo P, et al. High-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers[J]. Nano Lett., 2013, 13(7): 3124-3128. |
80 | Tao C, Neutzner S, Colella L, et al. 17.6% stabilized efficiency in low-temperature processed planar perovskite solar cells[J]. Energy Environ. Sci., 2015, 8(8): 2365-2370. |
81 | Tian C B, Zhang S J, Li S, et al. A C60 modification layer using a scalable deposition technology for efficient printable mesoscopic perovskite solar cells[J]. Sol. RRL, 2018, 2(10):1800174. |
82 | Zhou Y Q, Wu B S, Lin G H, et al. Enhancing performance and uniformity of perovskite solar cells via a solution-processed C70 interlayer for interface engineering[J]. ACS Appl. Mater. Interfaces, 2017, 9(39): 33810-33818. |
83 | Li Y W, Zhao Y, Chen Q, et al. Multifunctional fullerene derivative for interface engineering in perovskite solar cells[J]. J. Am. Chem. Soc., 2015, 137(49): 15540-15547. |
84 | Zhang Y H, Wang P, Yu X G, et al. Enhanced performance and light soaking stability of planar perovskite solar cells using an amine-based fullerene interfacial modifier[J]. J. Mater. Chem. A, 2016, 4(47): 18509-18515. |
85 | Chen Q, Wang W, Xiao S Q, et al. Improved performance of planar perovskite solar cells using an amino-terminated multifunctional fullerene derivative as the passivation layer[J]. ACS Appl. Mater. Interfaces, 2019, 11(30): 27145-27152. |
86 | Ke W J, Zhao D W, Xiao C X, et al. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells[J]. J. Mater. Chem. A, 2016, 4(37): 14276-14283. |
87 | Liu X, Tsai K W, Zhu Z L, et al. A low-temperature, solution processable tin oxide electron-transporting layer prepared by the dual-fuel combustion method for efficient perovskite solar cells[J]. Adv. Mater. Interfaces, 2016, 3(13): 1600122. |
88 | Liu K, Chen S, Wu J H, et al. Fullerene derivative anchored SnO2 for high-performance perovskite solar cells[J]. Energy Environ. Sci., 2018. 11(12): 3463-3471. |
89 | Zhong M Y, Liang Y Q, Zhang J Q, et al. Highly efficient flexible MAPbI3 solar cells with a fullerene derivative-modified SnO2 layer as the electron transport layer[J]. J. Mater. Chem. A, 2019, 7(12): 6659-6664. |
90 | Tian C B, Lin K B, Lu J X, et al. Interfacial bridge using a cis-fulleropyrrolidine for efficient planar perovskite solar cells with enhanced stability[J]. Small Methods, 2019, 4(5): 1900476. |
91 | Qin M C, Ma J J, Ke W J, et al. Perovskite solar cells based on low-temperature processed indium oxide electron selective layers[J]. ACS Appl. Mater. Interfaces, 2016, 8(13): 8460-8466. |
92 | Eze V O, Seike Y, Mori T. Efficient planar perovskite solar cells using solution-processed amorphous WOx/fullerene C60 as electron extraction layers[J]. Organic Electronics, 2017, 46: 253-262. |
93 | Hou Q Z, Ren J, Chen H J, et al. Synergistic hematite-fullerene electron-extracting layers for improved efficiency and stability in perovskite solar cells[J]. ChemElectroChem, 2018, 5(5): 726-731. |
94 | Dong Q, Ho C H, Yu H, et al. Defect passivation by fullerene derivative in perovskite solar cells with aluminum-doped zinc oxide as electron transporting layer[J]. Chem. Mater., 2019, 31(17): 6833-6840. |
95 | Seo J, Park S, Kin Y C, et al. Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells[J]. Energy Environ. Sci., 2014, 7(8): 2642-2646. |
96 | Liu X D, Yu H, Yan L, et al. Triple cathode buffer layers composed of PCBM, C60, and LiF for high-performance planar perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2015, 7(11): 6230-6237. |
97 | Azimi H, Ameri T, Zhang H, et al. A universal interface layer based on an amine-functionalized fullerene derivative with dual functionality for efficient solution processed organic and perovskite solar cells[J]. Adv. Energy Mater., 2015, 5(8): 1401692. |
98 | Chen K, Cao T T, Sun Z Q, et al. Performance enhancement of perovskite solar cells through interfacial engineering: water-soluble fullerenol C60(OH)16 as interfacial modification layer[J]. Organic Electronics, 2018, 62: 327-334. |
99 | Liu Y, Bag M, Renna L A, et al. Understanding interface engineering for high-performance fullerene/perovskite planar heterojunction solar cells[J]. Adv. Energy Mater., 2016, 6(2): 1501606. |
100 | Xie J S, Yu X G, Sun X, et al. Improved performance and air stability of planar perovskite solar cells via interfacial engineering using a fullerene amine interlayer[J]. Nano Energy, 2016, 28: 330-337. |
101 | Liu X D, Huang P, Dong Q Q, et al. Enhancement of the efficiency and stability of planar p-i-n perovskite solar cells via incorporation of an amine-modified fullerene derivative as a cathode buffer layer[J]. Sci. China Chem., 2016, 60(1): 136-143. |
102 | Liu X, Jiao W X, Lei M, et al. Crown-ether functionalized fullerene as a solution-processable cathode buffer layer for high performance perovskite and polymer solar cells[J]. J. Mater. Chem. A, 2015, 3(17): 9278-9284. |
103 | Liu X, Lei M, Zhou Y, et al. High performance planar p-i-n perovskite solar cells with crown-ether functionalized fullerene and LiF as double cathode buffer layers[J]. Appl. Phys. Lett., 2015, 107(6): 063901. |
104 | Zhu Z L, Chueh C C, Lin F, et al. Enhanced ambient stability of efficient perovskite solar cells by employing a modified fullerene cathode interlayer[J]. Adv. Sci., 2016, 3(9): 1600027. |
105 | Cao T T, Huang P, Zhang K C, et al. Interfacial engineering via inserting functionalized water-soluble fullerene derivative interlayers for enhancing the performance of perovskite solar cells[J]. J. Mater. Chem. A, 2018, 6(8): 3435-3443. |
106 | Xie J S, Yu X G, Huang J B, et al. Self-organized fullerene interfacial layer for efficient and low-temperature processed planar perovskite solar cells with high UV-light stability[J]. Adv. Sci., 2017, 4(8): 1700018. |
107 | Duzhko V V, Dunham B, Rosa S J, et al. N-doped zwitterionic fullerenes as interlayers in organic and perovskite photovoltaic devices[J]. ACS Energy Lett., 2017, 2(5): 957-963. |
108 | Jeon I, Ueno H, Seo S, et al. Lithium-ion endohedral fullerene (Li+@C60) dopants in stable perovskite solar cells induce instant doping and anti-oxidation[J]. Angew. Chem. Int. Ed., 2018, 57(17): 4607-4611. |
109 | Jeon I, Shawky A, Lin H S, et al. Controlled redox of lithium-ion endohedral fullerene for efficient and stable metal electrode-free perovskite solar cells[J]. J. Am. Chem. Soc., 2019, 141(42): 16553-16558. |
110 | Wang K, Liu X Y, Huang R, et al. Nonionic Sc3N@C80 dopant for efficient and stable halide perovskite photovoltaics[J]. ACS Energy Lett., 2019, 4(8): 1852-1861. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[3] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[4] | 傅予, 刘兴翀, 王瀚雨, 李海敏, 倪亚飞, 邹文静, 雷月, 彭永姗. F3EACl修饰层对钙钛矿太阳能电池性能提升的研究[J]. 化工学报, 2023, 74(8): 3554-3563. |
[5] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[6] | 孟令玎, 崇汝青, 孙菲雪, 孟子晖, 刘文芳. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
[7] | 张澳, 罗英武. 低模量、高弹性、高剥离强度丙烯酸酯压敏胶[J]. 化工学报, 2023, 74(7): 3079-3092. |
[8] | 蔡斌, 张效林, 罗倩, 党江涛, 左栗源, 刘欣梅. 导电薄膜材料的研究进展[J]. 化工学报, 2023, 74(6): 2308-2321. |
[9] | 毛磊, 刘冠章, 袁航, 张光亚. 可捕集CO2的纳米碳酸酐酶粒子的高效制备及性能研究[J]. 化工学报, 2023, 74(6): 2589-2598. |
[10] | 徐文超, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂E-1310对HCFC-141b水合物生成的影响[J]. 化工学报, 2023, 74(5): 2179-2185. |
[11] | 王子健, 柯明, 李佳涵, 李舒婷, 孙巾茹, 童燕兵, 赵治平, 刘加英, 任璐. 短b轴ZSM-5分子筛制备方法及应用研究进展[J]. 化工学报, 2023, 74(4): 1457-1473. |
[12] | 陈向上, 马振杰, 任希华, 贾悦, 吕晓龙, 陈华艳. 三维网络萃取膜的制备及传质效率研究[J]. 化工学报, 2023, 74(3): 1126-1133. |
[13] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[14] | 刘润竹, 储甜甜, 张孝阿, 王成忠, 张军营. α,ω-端羟基亚苯基氟硅聚合物的合成及性能[J]. 化工学报, 2023, 74(3): 1360-1369. |
[15] | 王峰, 张顺鑫, 余方博, 刘亚, 郭烈锦. 光催化CO2还原制碳氢燃料系统优化策略研究[J]. 化工学报, 2023, 74(1): 29-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||