1 |
Gibertini M, Koperski M, Morpurgo A F, et al. Magnetic 2D materials and heterostructures[J]. Nature Nanotechnology, 2019, 14(5): 408-419.
|
2 |
Wang L, Sasaki T.Titanium oxide nanosheets: graphene analogues with versatile functionalities[J]. Chemical Reviews, 2014, 114(19): 9455-9486.
|
3 |
杜以波, Evans D G, 孙鹏, 等.阴离子型层柱材料研究进展[J]. 化学通报, 2000, 63(5): 20-24.
|
|
Du Y B, Evans D G, Sun P, et al. Anionic layered materials[J]. Chemistry, 2000, 63(5): 20-24.
|
4 |
Takagaki A, Sugisawa M, Lu D, et al. Exfoliated nanosheets as a new strong solid acid catalyst[J]. Journal of the American Chemical Society, 2003, 125(18): 5479-5485.
|
5 |
Takagaki A, Yoshida T, Lu D L, et al. Titanium niobate and titanium tantalate nanosheets as strong solid acid catalysts[J]. Journal of Physical Chemistry B, 2004, 108(31): 11549-11555.
|
6 |
Ida S, Ogata C, Eguchi M, et al. Photoluminescence of perovskite nanosheets prepared by exfoliation of layered oxides, K2Ln2Ti3O10, KLnNb2O7, and RbLnTa2O7 (Ln: lanthanide ion)[J]. Journal of the American Chemical Society, 2008, 130(36): 7052-7059.
|
7 |
Kalantar-Zadeh K, Ou J Z, Daeneke T, et al. Two dimensional and layered transition metal oxides[J]. Applied Materials Today, 2016, 5: 73-89.
|
8 |
Li L, Ma R Z, Ebina Y, et al. Layer-by-layer assembly and spontaneous flocculation of oppositely charged oxide and hydroxide nanosheets into inorganic sandwich layered materials[J]. Journal of the American Chemical Society, 2007, 129(25): 8000-8007.
|
9 |
Cai X K, Ozawa T C, Funatsu A, et al. Tuning the surface charge of 2D oxide nanosheets and the bulk-scale production of superlatticelike composites[J]. Journal of the American Chemical Society, 2015, 137(8): 2844-2847.
|
10 |
Sakai N, Kamanaka K, Sasaki T. Modulation of photochemical activity of titania nanosheets via heteroassembly with reduced graphene oxide. Enhancement of Photoinduced Hydrophilic Conversion Properties[J]. The Journal of Physical Chemistry C, 2016, 120(42): 23944-23950.
|
11 |
Ji Q M, Honma I, Paek S, et al. Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing[J]. Angewandte Chemie International Edition, 2010, 49(50): 9737-9739.
|
12 |
Liu Y Y, Stradins P, Wei S H. van der Waals metal-semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier[J]. Science Advances, 2016, 2(4).
|
13 |
Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
|
14 |
Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
|
15 |
Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162.
|
16 |
Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385.
|
17 |
Wei D C, Liu Y Q, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its eectrical properties[J]. Nano Letters, 2009, 9(5): 1752-1758.
|
18 |
Wang H B, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2(5): 781-794.
|
19 |
Liang J, Jiao Y, Jaroniec M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angewandte Chemie International Edition, 2012, 51(46): 11496-11500.
|
20 |
Fan X M, Yu C, Yang J, et al. A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors[J]. Advanced Energy Materials, 2015, 5(7): 1401761.
|
21 |
Ling Z, Wang Z Y, Zhang M D, et al. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Functional Materials, 2016, 26(1): 111-119.
|
22 |
Reinholdt M, Miehe-Brendle J, Delmotte L, et al. Fluorine route synthesis of montmorillonites containing Mg or Zn and characterization by XRD, thermal analysis, MAS NMR, and EXAFS spectroscopy[J]. Eur. J. Inorg. Chem., 2001, 2001(11): 2831-2841.
|
23 |
Sasaki T, Watanabe M, Hashizum H, et al. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. pairwise association of nanosheets and dynamic reassembling Process initiated from it[J]. Journal of the American Chemical Society, 1996, 118(35): 8329-8335.
|
24 |
Ding W, Wei Z D, Chen S G, et al. Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction[J]. Angewandte Chemie International Edition, 2013, 52(45): 11755-11759.
|
25 |
Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924.
|
26 |
Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Phys. Rev. Lett., 2006, 97(18): 187401.
|
27 |
Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8(4): 235-246.
|
28 |
Ruan L W, Xu G S, Gu L N, et al. The physical properties of Li-doped g-C3N4 monolayer sheet investigated by the first-principles[J]. Materials Research Bulletin, 2015, 66: 156-162.
|
29 |
Lee J H, Ryu J, Kim J Y, et al. Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride[J]. Journal of Materials Chemistry A, 2014, 2(25): 9490-9495.
|
30 |
Wang F N, Xu J M, Shao X Z, et al. Palladium on nitrogen-doped mesoporous carbon: a bifunctional catalyst for formate-based, carbon-neutral hydrogen storage[J]. ChemSusChem, 2016, 9(3): 246-251.
|
31 |
巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285.
|
|
Gong J L. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC Journal, 2017, 68(4): 1282-1285.
|
32 |
Liu Q G, Yang X F, Li L, et al. Direct catalytic hydrogenation of CO2 to formate over a Schiff-base-mediated gold nanocatalyst[J]. Nature Communications, 2017, 8(1): 1407.
|
33 |
Enthaler S, von Langermann J, Schmidt T. Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?[J]. Energy & Environmental Science, 2010, 3(9): 1207-1217.
|
34 |
Sordakis K, Tang C H, Vogt L K, et al. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols[J]. Chemical Reviews, 2018, 118(2): 372-433.
|
35 |
Álvarez A, Bansode A, Urakawa A, et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chemical Reviews, 2017, 117(14): 9804-9838.
|
36 |
Wang B S, Luo Z J, Elageed E H M, et al. DBU and DBU-derived ionic liquid synergistic catalysts for the conversion of carbon dioxide/carbon disulfide to 3-aryl-2-oxazolidinones/[1,3]dithiolan-2-ylidenephenyl- amine[J]. ChemCatChem, 2016, 8(4): 830-838.
|