化工学报 ›› 2020, Vol. 71 ›› Issue (10): 4800-4807.DOI: 10.11949/0438-1157.20200680
李路1,2(),刘灵惠1,3(),徐金铭1(),黄延强1,张涛1
收稿日期:
2020-06-02
修回日期:
2020-07-20
出版日期:
2020-10-05
发布日期:
2020-10-05
通讯作者:
徐金铭
作者简介:
李路(1990—),女,硕士研究生,基金资助:
Lu LI1,2(),Linghui LIU1,3(),Jinming XU1(),Yanqiang HUANG1,Tao ZHANG1
Received:
2020-06-02
Revised:
2020-07-20
Online:
2020-10-05
Published:
2020-10-05
Contact:
Jinming XU
摘要:
利用人工合成的蒙脱石做硬模板,以插层的邻菲罗啉-钌络合物为前体,在惰性气氛下热解后用氢氟酸和盐酸刻蚀除去蒙脱石模板制备出负载钌纳米粒子的氮掺杂石墨烯催化剂(Ru-NG)。Ru-NG具有与模板蒙脱石类似的层状石墨烯结构,C、N、O及Ru元素在其上分布均匀。Ru-NG中钌的含量随钌前体的加入量的增加而增加,但受蒙脱石片层的物理限域作用及与含氮物种的配位作用,钌纳米粒子的粒径却无显著变化,且粒径均一,平均粒径在1.2~1.4 nm范围内。与传统浸渍-还原法制备的活性炭负载的Ru催化剂相比,Ru-NG在二氧化碳加氢生成甲酸反应中表现出优异的催化活性。
中图分类号:
李路, 刘灵惠, 徐金铭, 黄延强, 张涛. 负载钌的氮掺杂石墨烯催化剂的制备及应用[J]. 化工学报, 2020, 71(10): 4800-4807.
Lu LI, Linghui LIU, Jinming XU, Yanqiang HUANG, Tao ZHANG. Synthesis of ruthenium-embedded nitrogen-doped graphene for carbon dioxide hydrogenation[J]. CIESC Journal, 2020, 71(10): 4800-4807.
PMIM 质量/ g | 9.5%氯化钌溶液质量/g | Ru 含量/%(mass) |
---|---|---|
3.6 | 0.215 | 1.4 |
3.6 | 0.430 | 2.1 |
3.6 | 0.645 | 2.4 |
3.6 | 0.860 | 3.5 |
表1 不同钌负载量催化剂的制备参数
Table 1 Synthesis conditions of Ru-NG catalysts with different Ruthenium loadings
PMIM 质量/ g | 9.5%氯化钌溶液质量/g | Ru 含量/%(mass) |
---|---|---|
3.6 | 0.215 | 1.4 |
3.6 | 0.430 | 2.1 |
3.6 | 0.645 | 2.4 |
3.6 | 0.860 | 3.5 |
样品 | D峰 | G峰 | R=ID/IG | ||
---|---|---|---|---|---|
峰位置/cm-1 | 半峰宽 | 峰位置/cm-1 | 半峰宽 | ||
1.4% Ru-NG | 1378 | 301.7 | 1589 | 103.8 | 3.01 |
2.1% Ru-NG | 1372 | 351.6 | 1591 | 86.4 | 3.53 |
2.4% Ru-NG | 1375 | 293 | 1591 | 100.2 | 3.01 |
3.5% Ru-NG | 1381 | 305 | 1585 | 100.6 | 2.99 |
表2 Ru-NG 催化剂的拉曼特征峰参数
Table 2 Raman spectral parameters of Ru-NG catalysts
样品 | D峰 | G峰 | R=ID/IG | ||
---|---|---|---|---|---|
峰位置/cm-1 | 半峰宽 | 峰位置/cm-1 | 半峰宽 | ||
1.4% Ru-NG | 1378 | 301.7 | 1589 | 103.8 | 3.01 |
2.1% Ru-NG | 1372 | 351.6 | 1591 | 86.4 | 3.53 |
2.4% Ru-NG | 1375 | 293 | 1591 | 100.2 | 3.01 |
3.5% Ru-NG | 1381 | 305 | 1585 | 100.6 | 2.99 |
样品 | BET比表面积/(m2/g) | 孔容/ (cm3/g) |
---|---|---|
1.4%Ru-NG | 416.9 | 0.26 |
2.1%Ru-NG | 397.3 | 0.25 |
2.4%Ru-NG | 365.0 | 0.22 |
表3 Ru-NG催化剂的比表面积和孔容
Table 3 Specific surface area and pore volume of Ru-NG catalysts
样品 | BET比表面积/(m2/g) | 孔容/ (cm3/g) |
---|---|---|
1.4%Ru-NG | 416.9 | 0.26 |
2.1%Ru-NG | 397.3 | 0.25 |
2.4%Ru-NG | 365.0 | 0.22 |
催化剂 | AAR① | 转换数(TON)② |
---|---|---|
1.4% Ru-NG | 0.19 | 2587 |
2.4% Ru-NG | 0.35 | 2374 |
3.5% Ru-NG | 0.33 | 1738 |
2.5% Ru/AC | 0.015 | 124 |
表4 Ru-NG催化剂的二氧化碳加氢制甲酸反应活性
Table 4 Hydrogenation of carbon dioxide to formate with Ru-NG catalysts
催化剂 | AAR① | 转换数(TON)② |
---|---|---|
1.4% Ru-NG | 0.19 | 2587 |
2.4% Ru-NG | 0.35 | 2374 |
3.5% Ru-NG | 0.33 | 1738 |
2.5% Ru/AC | 0.015 | 124 |
1 | Gibertini M, Koperski M, Morpurgo A F, et al. Magnetic 2D materials and heterostructures[J]. Nature Nanotechnology, 2019, 14(5): 408-419. |
2 | Wang L, Sasaki T.Titanium oxide nanosheets: graphene analogues with versatile functionalities[J]. Chemical Reviews, 2014, 114(19): 9455-9486. |
3 | 杜以波, Evans D G, 孙鹏, 等.阴离子型层柱材料研究进展[J]. 化学通报, 2000, 63(5): 20-24. |
Du Y B, Evans D G, Sun P, et al. Anionic layered materials[J]. Chemistry, 2000, 63(5): 20-24. | |
4 | Takagaki A, Sugisawa M, Lu D, et al. Exfoliated nanosheets as a new strong solid acid catalyst[J]. Journal of the American Chemical Society, 2003, 125(18): 5479-5485. |
5 | Takagaki A, Yoshida T, Lu D L, et al. Titanium niobate and titanium tantalate nanosheets as strong solid acid catalysts[J]. Journal of Physical Chemistry B, 2004, 108(31): 11549-11555. |
6 | Ida S, Ogata C, Eguchi M, et al. Photoluminescence of perovskite nanosheets prepared by exfoliation of layered oxides, K2Ln2Ti3O10, KLnNb2O7, and RbLnTa2O7 (Ln: lanthanide ion)[J]. Journal of the American Chemical Society, 2008, 130(36): 7052-7059. |
7 | Kalantar-Zadeh K, Ou J Z, Daeneke T, et al. Two dimensional and layered transition metal oxides[J]. Applied Materials Today, 2016, 5: 73-89. |
8 | Li L, Ma R Z, Ebina Y, et al. Layer-by-layer assembly and spontaneous flocculation of oppositely charged oxide and hydroxide nanosheets into inorganic sandwich layered materials[J]. Journal of the American Chemical Society, 2007, 129(25): 8000-8007. |
9 | Cai X K, Ozawa T C, Funatsu A, et al. Tuning the surface charge of 2D oxide nanosheets and the bulk-scale production of superlatticelike composites[J]. Journal of the American Chemical Society, 2015, 137(8): 2844-2847. |
10 | Sakai N, Kamanaka K, Sasaki T. Modulation of photochemical activity of titania nanosheets via heteroassembly with reduced graphene oxide. Enhancement of Photoinduced Hydrophilic Conversion Properties[J]. The Journal of Physical Chemistry C, 2016, 120(42): 23944-23950. |
11 | Ji Q M, Honma I, Paek S, et al. Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing[J]. Angewandte Chemie International Edition, 2010, 49(50): 9737-9739. |
12 | Liu Y Y, Stradins P, Wei S H. van der Waals metal-semiconductor junction: weak Fermi level pinning enables effective tuning of Schottky barrier[J]. Science Advances, 2016, 2(4). |
13 | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
14 | Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. |
15 | Castro Neto A H, Guinea F, Peres N M R, et al. The electronic properties of graphene[J]. Reviews of Modern Physics, 2009, 81(1): 109-162. |
16 | Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385. |
17 | Wei D C, Liu Y Q, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its eectrical properties[J]. Nano Letters, 2009, 9(5): 1752-1758. |
18 | Wang H B, Maiyalagan T, Wang X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications[J]. ACS Catalysis, 2012, 2(5): 781-794. |
19 | Liang J, Jiao Y, Jaroniec M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angewandte Chemie International Edition, 2012, 51(46): 11496-11500. |
20 | Fan X M, Yu C, Yang J, et al. A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors[J]. Advanced Energy Materials, 2015, 5(7): 1401761. |
21 | Ling Z, Wang Z Y, Zhang M D, et al. Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Advanced Functional Materials, 2016, 26(1): 111-119. |
22 | Reinholdt M, Miehe-Brendle J, Delmotte L, et al. Fluorine route synthesis of montmorillonites containing Mg or Zn and characterization by XRD, thermal analysis, MAS NMR, and EXAFS spectroscopy[J]. Eur. J. Inorg. Chem., 2001, 2001(11): 2831-2841. |
23 | Sasaki T, Watanabe M, Hashizum H, et al. Macromolecule-like aspects for a colloidal suspension of an exfoliated titanate. pairwise association of nanosheets and dynamic reassembling Process initiated from it[J]. Journal of the American Chemical Society, 1996, 118(35): 8329-8335. |
24 | Ding W, Wei Z D, Chen S G, et al. Space-confinement-induced synthesis of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction[J]. Angewandte Chemie International Edition, 2013, 52(45): 11755-11759. |
25 | Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. |
26 | Ferrari A C, Meyer J C, Scardaci V, et al. Raman spectrum of graphene and graphene layers[J]. Phys. Rev. Lett., 2006, 97(18): 187401. |
27 | Ferrari A C, Basko D M. Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nature Nanotechnology, 2013, 8(4): 235-246. |
28 | Ruan L W, Xu G S, Gu L N, et al. The physical properties of Li-doped g-C3N4 monolayer sheet investigated by the first-principles[J]. Materials Research Bulletin, 2015, 66: 156-162. |
29 | Lee J H, Ryu J, Kim J Y, et al. Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride[J]. Journal of Materials Chemistry A, 2014, 2(25): 9490-9495. |
30 | Wang F N, Xu J M, Shao X Z, et al. Palladium on nitrogen-doped mesoporous carbon: a bifunctional catalyst for formate-based, carbon-neutral hydrogen storage[J]. ChemSusChem, 2016, 9(3): 246-251. |
31 | 巩金龙. CO2化学转化研究进展概述[J]. 化工学报, 2017, 68(4): 1282-1285. |
Gong J L. A brief overview on recent progress on chemical conversion of CO2[J]. CIESC Journal, 2017, 68(4): 1282-1285. | |
32 | Liu Q G, Yang X F, Li L, et al. Direct catalytic hydrogenation of CO2 to formate over a Schiff-base-mediated gold nanocatalyst[J]. Nature Communications, 2017, 8(1): 1407. |
33 | Enthaler S, von Langermann J, Schmidt T. Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage?[J]. Energy & Environmental Science, 2010, 3(9): 1207-1217. |
34 | Sordakis K, Tang C H, Vogt L K, et al. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols[J]. Chemical Reviews, 2018, 118(2): 372-433. |
35 | Álvarez A, Bansode A, Urakawa A, et al. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes[J]. Chemical Reviews, 2017, 117(14): 9804-9838. |
36 | Wang B S, Luo Z J, Elageed E H M, et al. DBU and DBU-derived ionic liquid synergistic catalysts for the conversion of carbon dioxide/carbon disulfide to 3-aryl-2-oxazolidinones/[1,3]dithiolan-2-ylidenephenyl- amine[J]. ChemCatChem, 2016, 8(4): 830-838. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 宋瑞涛, 王派, 王云鹏, 李敏霞, 党超镔, 陈振国, 童欢, 周佳琦. 二氧化碳直接蒸发冰场排管内流动沸腾换热数值模拟分析[J]. 化工学报, 2023, 74(S1): 96-103. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 杨学金, 杨金涛, 宁平, 王访, 宋晓双, 贾丽娟, 冯嘉予. 剧毒气体PH3的干法净化技术研究进展[J]. 化工学报, 2023, 74(9): 3742-3755. |
[5] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[6] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[7] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[8] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[9] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[10] | 胡兴枝, 张皓焱, 庄境坤, 范雨晴, 张开银, 向军. 嵌有超小CeO2纳米粒子的碳纳米纤维的制备及其吸波性能[J]. 化工学报, 2023, 74(8): 3584-3596. |
[11] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[12] | 洪瑞, 袁宝强, 杜文静. 垂直上升管内超临界二氧化碳传热恶化机理分析[J]. 化工学报, 2023, 74(8): 3309-3319. |
[13] | 李凯旋, 谭伟, 张曼玉, 徐志豪, 王旭裕, 纪红兵. 富含零价钴活性位点的钴氮碳/活性炭设计及甲醛催化氧化应用研究[J]. 化工学报, 2023, 74(8): 3342-3352. |
[14] | 杨欣, 彭啸, 薛凯茹, 苏梦威, 吴燕. 分子印迹-TiO2光电催化降解增溶PHE废水性能研究[J]. 化工学报, 2023, 74(8): 3564-3571. |
[15] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 426
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 538
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||