化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1781-1793.DOI: 10.11949/0438-1157.20211846
杨珊珊1,2(),姚宇洋1,董云迪1,徐志鹏1,高尚上1,阮慧敏1,沈江南1()
收稿日期:
2021-12-30
修回日期:
2022-02-10
出版日期:
2022-04-05
发布日期:
2022-04-25
通讯作者:
沈江南
作者简介:
杨珊珊(1990—),女,博士,基金资助:
Shanshan YANG1,2(),Yuyang YAO1,Yundi DONG1,Zhipeng XU1,Shangshang GAO1,Huimin RUAN1,Jiangnan SHEN1()
Received:
2021-12-30
Revised:
2022-02-10
Online:
2022-04-05
Published:
2022-04-25
Contact:
Jiangnan SHEN
摘要:
基于18-冠-6醚环腔体可与K+形成1∶1型稳定的络合物,通过掺杂的方式将4,4'-二氨基-二苯并-18-冠-6(A18C6)引入离子交换膜基材料中并成膜,然后利用1,3,5-苯三甲酰氯(TMC)对A18C6分子进行交联固定,制得一系列改性阳离子交换膜。通过改变A18C6的含量和TMC的反应时间来调控阳离子交换膜的基体结构,系统考察了改性膜在K+/Mg2+、K+/Na+ 和K+/Li+的二元体系中对K+的电渗析选择性。研究结果表明,在电流密度为5.0 mA·cm-2的条件下,最优膜M-A18C6-10%-T30在K+/Mg2+和K+/Li+体系中对K+的选择性(
中图分类号:
杨珊珊, 姚宇洋, 董云迪, 徐志鹏, 高尚上, 阮慧敏, 沈江南. 基于二苯并-18-冠-6基体改性的K+选择性离子交换膜的制备及性能研究[J]. 化工学报, 2022, 73(4): 1781-1793.
Shanshan YANG, Yuyang YAO, Yundi DONG, Zhipeng XU, Shangshang GAO, Huimin RUAN, Jiangnan SHEN. Preparation and performance of ion exchange membrane with K+ selectivity based on dibenzo-18-crown-6 modification[J]. CIESC Journal, 2022, 73(4): 1781-1793.
膜名称 | 厚度/μm | 爆破强度/MPa | 面电阻/ (Ω·cm2) | 迁移数/% |
---|---|---|---|---|
AMX | 140 | ≥ 0.25 | 1.8 | 98 |
CIMS | 150 | ≥ 0.10 | 2.4 | > 96 |
表1 实验中所用商业离子交换膜的基本参数
Table 1 Commercial membranes used in measurement and their characteristic properties
膜名称 | 厚度/μm | 爆破强度/MPa | 面电阻/ (Ω·cm2) | 迁移数/% |
---|---|---|---|---|
AMX | 140 | ≥ 0.25 | 1.8 | 98 |
CIMS | 150 | ≥ 0.10 | 2.4 | > 96 |
膜种类 | C 1s窄谱中可能存在的化学基团的含量/% | ||
---|---|---|---|
C—C/C—H (284.6 eV) | C—O/C—N (286.2 eV) | OC—O (288.2 eV) | |
M-A18C6-10% | 84.21 | 14.54 | 1.25 |
M-A18C6-5%-T30 | 73.93 | 16.20 | 9.87 |
M-A18C6-10%-T30 | 79.81 | 17.64 | 2.54 |
M-A18C6-20%-T30 | 70.45 | 25.46 | 4.09 |
表2 由C 1s窄谱获得的改性膜中可能的化学物种和含量
Table 2 The probable chemical species and content in modified membranes obtained from narrow-spectrum of C 1s
膜种类 | C 1s窄谱中可能存在的化学基团的含量/% | ||
---|---|---|---|
C—C/C—H (284.6 eV) | C—O/C—N (286.2 eV) | OC—O (288.2 eV) | |
M-A18C6-10% | 84.21 | 14.54 | 1.25 |
M-A18C6-5%-T30 | 73.93 | 16.20 | 9.87 |
M-A18C6-10%-T30 | 79.81 | 17.64 | 2.54 |
M-A18C6-20%-T30 | 70.45 | 25.46 | 4.09 |
图11 阳离子交换膜的面电阻和迁移数随A18C6含量的变化
Fig.11 Surface area resistance and transport number of cation exchange membranes as function of the percent of A18C6 in membrane matrix
图12 改性膜在等浓度(0.05 mol·L-1)的K+/Mg2+体系中对阳离子的选择性(电流密度为5.0 mA·cm–2)
Fig.12 Permselectivity of cations for modified membranes in 0.05 mol·L-1 K+/Mg2+ system at current density of 5.0 mA·cm–2
图13 原膜、改性膜和商业单价阳离子交换膜CIMS在ED分离K+/Mg2+过程中的阳离子通量
Fig.13 Cation fluxes of the pristine membrane, modified membranes and commercial monovalent cation exchange membrane CIMS in the ED process for K+/Mg2+ separation
图15 原膜M-0、改性膜M-A18C6-10%-T30在K+/Na+(a)和K+/Li+(b)体系中的选择性和离子通量
Fig.15 Selectivity and ion fluxes of pristine membrane (M-0), modified membrane (M-A18C6-10%-T30) in K+/Na+ (a) and K+/Li+ (b) systems
1 | Zhang W, Miao M J, Pan J F, et al. Process economic evaluation of resource valorization of seawater concentrate by membrane technology[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(7): 5820-5830. |
2 | Al-Amshawee S, Yunus M Y B M, Azoddein A A M, et al. Electrodialysis desalination for water and wastewater: a review[J]. Chemical Engineering Journal, 2020, 380: 122231. |
3 | Ahdab Y D, Rehman D, Lienhard J H V. Brackish water desalination for greenhouses: improving groundwater quality for irrigation using monovalent selective electrodialysis reversal[J]. Journal of Membrane Science, 2020, 610: 118072. |
4 | Wang L, Patel S K, Elimelech M. Correlation equation for evaluating energy consumption and process performance of brackish water desalination by electrodialysis[J]. Desalination, 2021, 510: 115089. |
5 | Hosseini S M, Alibakhshi H, Jashni E, et al. A novel layer-by-layer heterogeneous cation exchange membrane for heavy metal ions removal from water[J]. Journal of Hazardous Materials, 2020, 381: 120884. |
6 | Tamersit S, Bouhidel K E, Zidani Z. Investigation of electrodialysis anti-fouling configuration for desalting and treating tannery unhairing wastewater: feasibility of by-products recovery and water recycling[J]. Journal of Environmental Management, 2018, 207: 334-340. |
7 | 蔡媛媛, 郭百涛, 邢卫红, 等. 面向健康产业应用需求的膜技术与膜材料[J]. 化工学报, 2020, 71(7): 2921-2932. |
Cai Y Y, Guo B T, Xing W H, et al. Progress research on development of membrane technology and materials for health industry[J]. CIESC Journal, 2020, 71(7): 2921-2932. | |
8 | Luo T, Abdu S, Wessling M. Selectivity of ion exchange membranes: a review[J]. Journal of Membrane Science, 2018, 555: 429-454. |
9 | Strathmann H. Electrodialysis, a mature technology with a multitude of new applications[J]. Desalination, 2010, 264(3): 268-288. |
10 | Patel M, Sheth B K. Electrodialysis in the separation of sulfuric acid from the mixture of sulfuric and hydrochloric acid[J]. International Journal of Advance Research and Innovative Ideas in Education, 2017, 3: 5092-5097. |
11 | Farrokhzad H, Darvishmanesh S, Genduso G, et al. Development of bivalent cation selective ion exchange membranes by varying molecular weight of polyaniline[J]. Electrochimica Acta, 2015, 158: 64-72. |
12 | Farrokhzad H, Moghbeli M R, Gerven T V, et al. Surface modification of composite ion exchange membranes by polyaniline[J]. Reactive and Functional Polymers, 2015, 86: 161-167. |
13 | 刘元伟, 董晨初, 廖俊斌, 等. 不同侧链BPPO阴离子交换膜的制备及其抗污染性能[J]. 化工学报, 2021,72(3): 1732-1741. |
Liu Y W, Dong C C, Liao J B, et al. Anti-fouling properties and preparation of anion-exchange membranes based on BPPO modified by different side chain lengths[J]. CIESC Journal, 2021,72(3): 1732-1741. | |
14 | Thakur A K, Manohar M, Shahi V K. Controlled metal loading on poly(2-acrylamido-2-methyl-propane-sulfonic acid) membranes by an ion-exchange process to improve electrodialytic separation performance for mono-/bi-valent ions[J]. Journal of Materials Chemistry A, 2015, 3(35): 18279-18288. |
15 | Xu T T, Shehzad M A, Yu D B, et al. Highly cation permselective metal-organic framework membranes with leaf-like morphology[J]. ChemSusChem, 2019, 12(12): 2593-2597. |
16 | 潘杰峰, 郑瑜, 丁金成, 等. 膜法电容去离子技术用于水溶液中单/多价阴离子的分离[J]. 化工学报, 2018, 69(8): 3502-3508. |
Pan J F, Zheng Y, Ding J C, et al. Monovalent anions removal by capacitive deionization integrated with monovalent anion permselective exchange membrane[J]. CIESC Journal, 2018, 69(8): 3502-3508. | |
17 | Fertig N, Klau M, George M, et al. Activity of single ion channel proteins detected with a planar microstructure[J]. Applied Physics Letters, 2002, 81: 4865-4867. |
18 | Liu H M, Jameson C J, Murad S. Molecular dynamics simulation of ion selectivity process in nanopores[J]. Molecular Simulation, 2008, 34(2): 169-175. |
19 | Pedersen C J. Cyclic polyethers and their complexes with metal salts[J]. Journal of the American Chemical Society, 1967, 89(26): 7017-7036. |
20 | Zhang B, Wang J, Yu Z Q, et al. Novel optical anisotropy of a liquid crystalline “cubic” phase in a discotic crown ether derivative[J]. Journal of Materials Chemistry C, 2014, 2(26): 5168-5175. |
21 | Ren C L, Shen J, Zeng H Q, et al. Combinatorial evolution of fast-conducting highly selective K+-channels via modularly tunable directional assembly of crown ethers[J]. Journal of the American Chemical Society, 2017, 139(36): 12338-12341. |
22 | Sata T, Tanimoto M, Kawamura K, et al. Transport properties of cation exchange membranes in the presence of ether compounds in electrodialysis[J]. Journal of Colloid and Interface Science, 1999, 219(2): 310-319. |
23 | Olsher U, Hankins M G, Kim Y D, et al. Anion effect on selectivity in crown ether extraction of alkali metal cations[J]. Journal of the American Chemical Society, 1993, 115(8): 3370-3371. |
24 | Bhattacharyya A, Goswami A. Effect of cation driven loading of dibenzo-18-crown-6 in Nafion-117 membrane on the diffusion and transport behavior of alkali metal ions[J]. Journal of Physical Chemistry B, 2009, 113: 12958-12963. |
25 | Zoetebier B, Tas S, Vancso G, et al. Synthesis of poly(arylene ether ketone)s bearing skeletal crown ether units for cation exchange membranes[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 53: 2786-2793. |
26 | Chaudhury S, Bhattacharyya A, Goswami A. Electrodriven ion transport through crown ether-Nafion composite membrane: enhanced selectivity of Cs+ over Na+ by ion gating at the surface[J]. Industrial & Engineering Chemistry Research, 2014, 53: 8804-8809. |
27 | Chaudhury S, Bhattacharyya A, Goswami A. Electrodriven selective transport of Cs+ using chlorinated cobalt dicarbollide in polymer inclusion membrane: a novel approach for cesium removal from simulated nuclear waste solution[J]. Environmental Science & Technology, 2014, 48: 12994-13000. |
28 | Pethrick R A, Wilson M J, Affrossman S, et al. Synthesis and cation complexation properties of crown ether polyamic acids/imides[J]. Polymer, 2000, 41(19): 7111-7121. |
29 | Gourdet B, Singh K, Stuart A M, et al. Di(1H,1H,2H,2H-perfluorooctyl)-dibenzo-18-crown-6: a “light fluorous” recyclable phase transfer catalyst[J]. Journal of Fluorine Chemistry, 2010, 131(11): 1133-1143. |
30 | Ye G, Bai F F, Wei J C, et al. Novel polysiloxane resin functionalized with dicyclohexano-18-crown-6 (DCH18C6): synthesis, characterization and extraction of Sr(Ⅱ) in high acidity HNO3 medium[J]. Journal of Hazardous Materials, 2012, 225/226: 8-14. |
31 | Tavangar T, Ashtiani F Z, Karimi M. Morphological and performance evaluation of highly sulfonated polyethersulfone/polyethersulfone membrane for oil/water separation[J]. Journal of Polymer Research, 2020, 27(9): 1-12. |
32 | Khodabakhshi M R, Goodarzi V. Preparing and analysis an innovative membrane based on polyethersulfone/sulfonated polyethersulfone/organically modified nanoclay: ability to heavy metal removal[J]. Materials Today Communications, 2021, 26: 101957. |
33 | Wu D Y, Yi C H, Zhang B B, et al. Synthesis and characterization of trans-di(nitrobenzo)- and di(aminobenzo)-18-crown-6 derivatives with high selectivity[J]. Synthetic Communications, 2018, 48(3): 329-335. |
34 | Yang T, Xu W H, Peng X W, et al. Crown ether-containing polyimides with high dielectric constant[J]. RSC Advances, 2017, 7(38): 23309-23312. |
35 | Zhang H Q, Li X F, Zhao C J, et al. Composite membranes based on highly sulfonated PEEK and PBI: morphology characteristics and performance[J]. Journal of Membrane Science, 2008, 308(1/2): 66-74. |
36 | 王超, 潘能修, 鲁丹, 等. 电渗析用季铵化聚氯乙烯均相阴离子交换膜的制备[J]. 化工学报, 2019, 70(4): 1620-1627. |
Wang C, Pan N X, Lu D, et al. Preparation of homogeneous anion exchange membrane based on quaternized PVC for electrodialysis[J]. CIESC Journal, 2019, 70(4): 1620-1627. | |
37 | Sata T, Yoshida T, Matsusaki K. Transport properties of phosphonic acid and sulfonic acid cation exchange membranes[J]. Journal of Membrane Science, 1996, 120(1): 101-110. |
38 | 姜玉良, 刘元伟, 韩波, 等. PEI交联的PECH/nylon复合阴离子交换膜的制备及性能研究[J]. 化工学报, 2018, 69(6): 2744-2752. |
Jiang Y L, Liu Y W, Han B, et al. Preparation and properties of PEI crosslinked PECH/nylon composite anion exchange membrane[J]. CIESC Journal, 2018, 69(6): 2744-2752. | |
39 | Nightingale E R. Phenomenological theory of ion solvation. Effective radii of hydrated ions[J]. The Journal of Chemical Physics, 1959, 63(9): 1381-1387. |
40 | Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. |
[1] | 邵苛苛, 宋孟杰, 江正勇, 张旋, 张龙, 高润淼, 甄泽康. 水平方向上冰中受陷气泡形成和分布实验研究[J]. 化工学报, 2023, 74(S1): 161-164. |
[2] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[3] | 吴曦, 区祖迪, 张鑫杰, 徐士鸣, 朱晓静. HFO-1243zf爆燃特性实验研究[J]. 化工学报, 2023, 74(S1): 346-352. |
[4] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[5] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[6] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[7] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[8] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[9] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[10] | 胡亚丽, 胡军勇, 马素霞, 孙禹坤, 谭学诣, 黄佳欣, 杨奉源. 逆电渗析热机新型工质开发及电化学特性研究[J]. 化工学报, 2023, 74(8): 3513-3521. |
[11] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[12] | 高燕, 伍鹏, 尚超, 胡泽君, 陈晓东. 基于双流体喷嘴的磁性琼脂糖微球的制备及其蛋白吸附性能探究[J]. 化工学报, 2023, 74(8): 3457-3471. |
[13] | 张贲, 王松柏, 魏子亚, 郝婷婷, 马学虎, 温荣福. 超亲水多孔金属结构驱动的毛细液膜冷凝及传热强化[J]. 化工学报, 2023, 74(7): 2824-2835. |
[14] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
[15] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||