化工学报 ›› 2021, Vol. 72 ›› Issue (1): 143-157.DOI: 10.11949/0438-1157.20201051
收稿日期:
2020-07-29
修回日期:
2020-09-18
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
姜晓滨
作者简介:
盛磊(1996—),男,硕士研究生,基金资助:
SHENG Lei(),LI Peiyu,NIU Yuchao,HE Gaohong,JIANG Xiaobin()
Received:
2020-07-29
Revised:
2020-09-18
Online:
2021-01-05
Published:
2021-01-05
Contact:
JIANG Xiaobin
摘要:
结晶颗粒制备技术在化工、医药、电子、生物等领域具有不可替代的作用。近年来,随着化工过程强化和微化工技术的快速发展,基于微尺度的过程强化方法在晶体颗粒制备过程中得到广泛的应用,成为高端颗粒制备的前沿技术。本文系统综述了该领域的研究进展:围绕微流控组件,简述微结构混合器、微流体技术对提高微观混合效率的原理及其在纳米材料、药物结晶等领域的应用;围绕微尺度力场,综述超重力旋转填充床的结构设计、可视化研究,超声场为代表的声空化效应及外加力场对超细纳米颗粒制备和药物连续结晶过程的应用;进一步,针对新型膜微尺度传质强化过程,分析微孔膜材料强化传质过程以及膜表面的晶体颗粒“黏附-生长-脱落”运动行为,阐明影响微孔膜分散传质强化过程的关键结构和过程参数,系统论述致密膜液层强化传质的表面更新机制和控制结晶颗粒制备的多级膜操作系统。最后,展望微尺度过程传质强化的结晶颗粒制备技术发展趋势。
中图分类号:
盛磊, 李培钰, 牛宇超, 贺高红, 姜晓滨. 微尺度过程强化的结晶颗粒制备研究进展[J]. 化工学报, 2021, 72(1): 143-157.
SHENG Lei, LI Peiyu, NIU Yuchao, HE Gaohong, JIANG Xiaobin. Progresses in the preparation of micro-scale process-enhanced crystalline particles[J]. CIESC Journal, 2021, 72(1): 143-157.
1 | 孙宏伟, 陈建峰. 我国化工过程强化技术理论与应用研究进展[J]. 化工进展, 2011, 30(1): 1-15. |
Sun H W, Chen J F. Advances in fundamental study and application of chemical process intensification technology in China[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 1-15. | |
2 | Cortes G G E, van der Schaaf J, Kiss A A. A review on process intensification in HiGee distillation[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(6): 1136-1156. |
3 | Keil F J. Process intensification[J]. Reviews in Chemical Engineering, 2018, 34(2): 135-200. |
4 | 张亮亮, 付纪文, 罗勇, 等. 面向海洋工程的超重力过程强化技术及应用[J]. 化工学报, 2020, 71(1): 1-15. |
Zhang L L, Fu J W, Luo Y, et al. Higee process intensification technology and application for oceaneering[J]. CIESC Journal, 2020, 71(1): 1-15. | |
5 | 李严凯, 王凯, 骆广生. 液液微分散及其用于标准颗粒制备的研究进展[J]. 化工进展, 2019, 38(1): 30-44. |
Li Y K, Wang K, Luo G S. Advances in liquid-liquid micro-dispersion and its applications in standard particle preparation[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 30-44. | |
6 | Shang L R, Chen Y, Zhao Y J. Emerging droplet microfluidics[J]. Chemical Reviews, 2017, 117(12): 7964-8040. |
7 | Bourne J R. Mixing and the selectivity of chemical reaction [J]. Organic Process Research & Development, 2015, 7: 471-508. |
8 | Jensen K F. Flow chemistry—microreaction technology comes of age[J]. AIChE Journal, 2017, 63(3): 858-869. |
9 | 曾佑鹏, 卢金山, 曹建尉, 等. 用于微流体结晶的芯片及其应用进展[J]. 南昌航空大学学报: 自然科学版, 2018, 32(2): 33-43. |
Zeng Y P, Lu J S, Cao J W, et al. Development of microfluidic chip and its application in crystallization [J]. Journal of Nanchang Hangkong University: Natural Sciences, 2018, 32(2): 33-43. | |
10 | 姜枫, 刘国君, 杨志刚, 等. 微混合器的研究现状[J]. 微纳电子技术, 2016, 53(3): 166-176. |
Jiang F, Liu G J, Yang Z G, et al. Research status in micro-mixers[J]. Micronanoelectronic Technology, 2016, 53(3): 166-176. | |
11 | Bayareh M, Ashani M N, Usefian A, et al. Active and passive micromixers: a comprehensive review[J]. Chemical Engineering & Processing: Process Intensification, 2020, 147: 107771. |
12 | Hessel V, Löwe H, Schönfeld F. Micromixers—a review on passive and active mixing principles[J]. Chemical Engineering Science, 2005, 60(8/9): 2479-2501. |
13 | Chen Y P, Zhang C B, Shi M H, et al. Thermal and hydrodynamic characteristics of constructrual tree-shaped minichannel heat sink[J]. AIChE Journal, 2010, 56(8): 2018-2029. |
14 | Bai L, Fu Y H, Zhao S F, et al. Droplet formation in a microfluidic T-junction involving highly viscous fluid systems[J]. Chemical Engineering Science, 2016, 145: 141-148. |
15 | Sinibaldi G, Romano G P. Flow configurations in a Y splitting-junction microchannel[J]. Fluids, 2017, 2(2): 18-24. |
16 | Soleymani A, Kolehmainen E, Turunen I. Numerical and experimental investigations of liquid mixing in T-type micromixers[J]. Chemical Engineering Journal, 2008, 135: S219-S228. |
17 | Xu C, Zhong Y J, Zheng Y N, et al. Micromixing-assisted preparation of TiO2 films from ammonium hexafluorotitanate and urea by liquid phase deposition based on simulation of mixing process in T-shaped micromixer[J]. Ceramics International, 2019, 45(9): 11325-11334. |
18 | Xu J H, Li S W, Tan J, et al. Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping[J]. Microfluidics and Nanofluidics, 2008, 5(6): 711-717. |
19 | Yao C Q, Liu Y Y, Xu C, et al. Formation of liquid-liquid slug flow in a microfluidic T-junction: effects of fluid properties and leakage flow[J]. AIChE Journal, 2018, 64(1): 346-357. |
20 | Mulligan M K, Rothstein J P. Scale-up and control of droplet production in coupled microfluidic flow-focusing geometries[J]. Microfluidics and Nanofluidics, 2012, 13(1): 65-73. |
21 | Liu C, Zhang Q D, Zhu C Y, et al. Formation of droplet and “string of sausages” for water-ionic liquid ([BMIM][PF6]) two-phase flow in a flow-focusing device[J]. Chemical Engineering & Processing: Process Intensification, 2018, 125: 8-17. |
22 | Sartipzadeh O, Naghib S M, Seyfoori A, et al. Controllable size and form of droplets in microfluidic-assisted devices: effects of channel geometry and fluid velocity on droplet size [J]. Materials Science & Engineering C, 2020, 109: 110606. |
23 | Wang N N, Semprebon C, Liu H H, et al. Modelling double emulsion formation in planar flow-focusing microchannels [J]. Journal of Fluid Mechanics, 2020, 895: A22. |
24 | Zhu P G, Wang L Q. Passive and active droplet generation with microfluidics: a review [J]. Lab on a Chip, 2017, 17: 34-75. |
25 | Dummann G, Quittmann U, Gröschel L, et al. The capillary-microreactor: a new reactor concept for the intensification of heat and mass transfer in liquid–liquid reactions[J]. Catalysis Today, 2003, 79/80: 433-439. |
26 | Huang H, Toit H D, Besenhard M O, et al. Continuous flow synthesis of ultrasmall gold nanoparticles in a microreactor using trisodium citrate and their SERS performance[J]. Chemical Engineering Science, 2018, 189: 422-430. |
27 | Jovanović J, Rebrov E V, Nijhuis T A, et al. Liquid-liquid flow in a capillary microreactor: hydrodynamic flow patterns and extraction performance[J]. Industrial & Engineering Chemistry Research, 2011, 51(2): 1015-1026. |
28 | Shang M J, Noël T, Su Y H, et al. High pressure direct synthesis of adipic acid from cyclohexene and hydrogen peroxide via capillary microreactors[J]. Industrial & Engineering Chemistry Research, 2016, 55(10): 2669-2676. |
29 | Kockmann N, Kiefer T, Engler M, et al. Convective mixing and chemical reactions in microchannels with high flow rates[J]. Sensors and Actuators B: Chemical, 2006, 117(2): 495-508. |
30 | Yang K, Chu G W, Shao L, et al. Micromixing efficiency of viscous media in micro-channel reactor[J]. Chinese Journal of Chemical Engineering, 2009, 14(4): 546-551. |
31 | Kashid M N, Agar D W. Hydrodynamics of liquid-liquid slug flow capillary microreactor: flow regimes, slug size and pressure drop[J]. Chemical Engineering Journal, 2007, 131(1/2/3): 1-13. |
32 | Ghaini A, Kashid M N, Agar D W. Effective interfacial area for mass transfer in the liquid-liquid slug flow capillary microreactors[J]. Chemical Engineering & Processing: Process Intensification, 2010, 49(4): 358-366. |
33 | Shi H H, Xiao Y, Ferguson S, et al. Progress of crystallization in microfluidic devices[J]. Lab on a Chip, 2017, 17(13): 2167-2185. |
34 | Zhao H, Wang J X, Wang Q A, et al. Controlled liquid antisolvent precipitation of hydrophobic pharmaceutical nanoparticles in a microchannel reactor[J]. Industrial & Engineering Chemistry Research, 2007, 46: 8229-8235. |
35 | Shirure S V, Pore A S, Pangarkar V G. Intensification of precipitation using narrow channel reactors: magnesium hydroxide precipitation[J]. Industrial & Engineering Chemistry Research, 2005, 44: 5500-5507. |
36 | Teh S Y, Lin R, Hung L H, et al. Droplet microfluidics[J]. Lab on a Chip, 2008, 8(2): 198-220. |
37 | Solvas X C, DeMello A. Droplet microfluidics: recent developments and future applications[J]. Chemical Communication, 2011, 47(7): 1936-1942. |
38 | Nakamura H, Tashiro A, Yamaguchi Y, et al. Application of a microfluidic reaction system for CdSe nanocrystal preparation: their growth kinetics and photoluminescence analysis[J]. Lab on a Chip, 2004, 4(3): 237-240. |
39 | Ramanjaneyulu B T, Vidyacharan S, Ahn G N, et al. Ultrafast synthesis of 2-(benzhydrylthio)benzo[d]oxazole, an antimalarial drug, via an unstable lithium thiolate intermediate in a capillary microreactor[J]. Reaction Chemistry & Engineering, 2020, 5(5): 849-852. |
40 | Liu Z W, Guo L, Huang T H, et al. Experimental and CFD studies on the intensified micromixing performance of micro-impinging stream reactors built from commercial T-junctions[J]. Chemical Engineering Science, 2014, 119: 124-133. |
41 | Valente I, Celasco E, Marchisio D L, et al. Nanoprecipitation in confined impinging jets mixers: production, characterization and scale-up of pegylated nanospheres and nanocapsules for pharmaceutical use[J]. Chemical Engineering Science, 2012, 77: 217-227. |
42 | Guo T Y, Ruan B, Liu Z W, et al. Numerical and experimental investigations of liquid mixing in two-stage micro-impinging stream reactors[J]. Chinese Journal of Chemical Engineering, 2017, 66(9): 3271-3278. |
43 | 张建伟, 闫宇航, 沙新力, 等. 撞击流强化混合特性及用于制备超细粉体研究进展[J]. 化工进展, 2020, 39(3): 824-833. |
Zhang J W, Yan Y H, Sha X L, et al. Advances on impinging stream intensification mixing mechanism for preparing ultrafine powders[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 824-833. | |
44 | Gu R J, Li X L, Cheng K P, et al. Application of micro-impinging stream reactors in the preparation of Co and Al co-doped Ni(OH)2 nanocomposites for supercapacitors and their modification with reduced graphene oxide[J]. RSC Advances, 2019, 9(44): 25677-25689. |
45 | Liu Z W, Zhang Q C, Wen L X, et al. Preparation of ultrafine manganese dioxide by micro-impinging stream reactors and its electrochemical properties[J]. The Canadian Journal of Chemical Engineering, 2016, 94(3): 461-468. |
46 | Wu G Z, Zhou H Z, Zhu S F. Precipitation of barium sulfate nanoparticles via impinging streams[J]. Materials Letters, 2007, 61(1): 168-170. |
47 | Zhang Q C, Cheng K P, Wen L X, et al. A study on the precipitating and aging processes of CuO/ZnO/Al2O3 catalysts synthesized in micro-impinging stream reactors[J]. RSC Advances, 2016, 6(40): 33611-33621. |
48 | Vatta L L, Sanderson R D, Koch K R. An investigation into the potential large-scale continuous magnetite nanoparticle synthesis by high-pressure impinging stream reactors[J]. Journal of Magnetism and Magnetic Materials, 2007, 311(1): 114-119. |
49 | Dong B, Huang X N, Yang X G, et al. Rapid preparation of high electrochemical performance LiFePO4/C composite cathode material with an ultrasonic-intensified micro-impinging jetting reactor[J]. Ultrasonics-Sonochemistry, 2017, 39: 816-826. |
50 | 脱凌晗. 赤藓糖醇膜辅助溶析结晶过程的研究[D]. 大连: 大连理工大学, 2018. |
Tuo L H. Study on the erythritol membrane assisted antisolvent crystallization process[D]. Dalian: Dalian University of Technology, 2018. | |
51 | 初广文, 邹海魁, 曾晓飞, 等. 超重力反应强化技术及工业应用[J]. 北京化工大学学报(自然科学版), 2018, 45(5): 33-39. |
Chu G W, Zou H K, Zeng X F, et al. High gravity reaction intensification technology and its industrial application[J]. Journal of Beijing University of Chemical Technology ( Natural Science), 2018, 45(5): 33-39. | |
52 | 孙润林, 向阳, 杨宇成, 等. 超重力旋转床液体流动的可视化研究[J]. 高校化学工程学报, 2013, 27(3): 411-416. |
Sun R L, Xiang Y, Yang Y C, et al. A visual study of liquid flow in a rotating packing bed with super gravity[J]. Journal of Chemical Engineering of Chinese Universities, 2013, 27(3): 411-416. | |
53 | Jiao W Z, Luo S, He Z, et al. Applications of high gravity technologies for wastewater treatment: a review[J]. Chemical Engineering Journal, 2017, 313: 912-927. |
54 | Sang L, Luo Y, Chu G W, et al. Liquid flow pattern transition, droplet diameter and size distribution in the cavity zone of a rotating packed bed: a visual study[J]. Chemical Engineering Science, 2017, 158: 429-438. |
55 | Liu Y, Luo Y, Chu G W, et al. 3D numerical simulation of a rotating packed bed with structured stainless steel wire mesh packing[J]. Chemical Engineering Science, 2017, 170: 365-377. |
56 | 张文洁, 初广文, 罗勇, 等. 泡沫陶瓷填料旋转填充床微观混合性能[J]. 化工学报, 2014, 65(8): 2976-2980. |
Zhang W J, Chu G W, Luo Y, et al. Micromixing in rotating packed bed with ceramic foam packing[J]. CIESC Journal, 2014, 65(8): 2976-2980. | |
57 | Yi F, Zou H K, Chu G W, et al. Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed[J]. Chemical Engineering Journal, 2009, 145(3): 377-384. |
58 | Zhang L L, Wang J X, Xiang Y, et al. Absorption of carbon dioxide with ionic liquid in a rotating packed bed contactor: mass transfer study[J]. Industrial & Engineering Chemistry Research, 2011, 50(11): 6957-6964. |
59 | Li W Y, Zou H K, Chu G W, et al. A mass transfer model for devolatilization of highly viscous media in rotating packed bed[J]. Chinese Journal of Chemical Engineering, 2010, 18 (2): 194-201. |
60 | Guo K, Guo F, Feng Y D, et al. Synchronous visual and RTD study on liquid flow in rotating packed-bed contactor[J]. Chemical Engineering Science, 2000, 55: 1699-1706. |
61 | 申红艳, 刘有智, 朱芝敏. 超重力反应器制备纳米氢氧化镁的实验研究[J]. 无机盐工业, 2019, 51(4): 14-18. |
Shen H Y, Liu Y Z, Zhu Z M. Study on preparation of magnesium hydroxide nanoparticles with high-gravity reactor[J]. Inorganic Chemicals Industry, 2019, 51(4): 14-18. | |
62 | 祁贵生, 武晓利, 刘有智, 等. 超重力液相沉淀法制备纳米铁酸钴[J]. 化工进展, 2018, 37(5): 1680-1686. |
Qi G S, Wu X L, Liu Y Z, et al. Preparation of cobalt ferrite nanoparticles by high gravity liquid precipitation method[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1680-1686. | |
63 | Sun Q, Chen B, Wu X, et al. Preparation of transparent suspension of lamellar magnesium hydroxide nanocrystals using a high-gravity reactive precipitation combined with surface modification[J]. Industrial & Engineering Chemistry Research, 2015, 54(2): 666-671. |
64 | Cao S B, Han X G, Zhang L L, et al. Facile and scalable preparation of α-Fe2O3 nanoparticle by high-gravity reactive precipitation method for catalysis of solid propellants combustion[J]. Powder Technology, 2019, 353: 444-449. |
65 | Bao J, Wang J X, Zeng X F, et al. Large-scale synthesis of uniform silver nanowires by high-gravity technology for flexible transparent conductive electrodes[J]. Industrial & Engineering Chemistry Research, 2019, 58(45): 20630-20638. |
66 | Guo Z, Jones A G, Hao H, et al. Effect of ultrasound on the heterogeneous nucleation of BaSO4 during reactive crystallization[J]. Journal of Applied Physics, 2007, 101(5): 054907. |
67 | Guo Z, Jones A G, Li N, et al. The effect of ultrasound on the homogeneous nucleation of BaSO4 during reactive crystallization[J]. Chemical Engineering Science, 2006, 61(5): 1617-1626. |
68 | Li H, Li H R, Guo Z C, et al. The application of power ultrasound to reaction crystallization[J]. Ultrasonics Sonochemistry, 2006, 13(4): 359-363. |
69 | Zhao S N, Yao C Q, Dong Z Y, et al. Intensification of liquid-liquid two-phase mass transfer by oscillating bubbles in ultrasonic microreactor[J]. Chemical Engineering Science, 2018, 186: 122-134. |
70 | Dong Z Y, Zhao S N, Zhang Y C, et al. Mixing and residence time distribution in ultrasonic microreactors[J]. AIChE Journal, 2017, 63(4): 1404-1418. |
71 | Jia J F, Wang W C, Gao Y H, et al. Controlled morphology and size of curcumin using ultrasound in supercritical CO2 antisolvent[J]. Ultrasonics Sonochemistry, 2015, 27: 389-394. |
72 | Parimaladevi P, Supriya S, Srinivasan K, et al. The role of ultrasound in controlling the liquid-liquid phase separation and nucleation of vanillin polymorphs Ⅰ and Ⅱ[J]. Journal of Crystal Growth, 2018, 484: 21-30. |
73 | Bhangu S K, Ashokkumar M, Lee J, et al. Ultrasound assisted crystallization of paracetamol: crystal size distribution and polymorph control[J]. Crystal Growth & Design, 2016, 16(4): 1934-1941. |
74 | Hussain M N, Jordens J, John J J, et al. Enhancing pharmaceutical crystallization in a flow crystallizer with ultrasound: anti-solvent crystallization[J]. Ultrasonics - Sonochemistry, 2019, 59: 104743. |
75 | Taleb M, Didierjean C, Jelsch C, et al. Crystallization of proteins under an external electric field[J]. Journal of Crystal Growth, 1999, 200: 575-582. |
76 | Taleb M, Didierjean C, Jelsch C, et al. Equilibrium kinetics of lysozyme crystallization under an external electric field[J]. Journal of Crystal Growth, 2001, 232: 250-255. |
77 | Charron C, Didierjean C, Mangeot J P, et al. The ‘Octopus' plate for protein crystallization under an electric field[J]. Journal of Applied Crystallography, 2003, 36: 1482-1483. |
78 | Koizumi H, Fujiwara K, Uda S. Role of the electric double layer in controlling the nucleation rate for tetragonal hen egg white lysozyme crystals by application of an external electric field[J]. Crystal Growth & Design, 2010, 10(6): 2591-2595. |
79 | Belviso B D, Caliandro R, Salehi S M, et al. Protein crystallization in ionic-liquid hydrogel composite membranes[J]. Crystals, 2019, 9: 253-265. |
80 | Carina P R, Mayra C C, Nuria E E, et al. Recent advances in the understanding of the influence of electric and magnetic fields on protein crystal growth[J]. Crystal Growth & Design, 2017, 17: 135-145. |
81 | Tassinari F, Steidel J, Paltiel S, et al. Enantioseparation by crystallization using magnetic substrates[J]. Chemical Science, 2019, 10: 5246-5250. |
82 | Yuan C X, Xu Y, Jin R S. Effect of a magnetic field on the crystallization time and quality of phytosterols[J]. Journal of Chemical Engineering of Japan, 2019, 52(5): 401-405. |
83 | Chen J F. Green chemical engineering [J]. Engineering, 2017, 3(3): 283-284. |
84 | Falk L, Commenge J M. Performance comparison of micromixers[J]. Chemical Engineering Science, 2010, 65(1): 405-411. |
85 | Lin J, Sheng L, Tuo L H, et al. Membrane-assisted antisolvent crystallization: interfacial mass-transfer simulation and multistage process control[J]. Industrial & Engineering Chemistry Research, 2020, 59(21): 10160-10171. |
86 | Tuo L H, Ruan X H, Xiao W, et al. A novel hollow fiber membrane-assisted antisolvent crystallization for enhanced mass transfer process control[J]. AIChE Journal, 2019, 65(2): 734-744. |
87 | Sun L J, Song Y, Li B H, et al. A modified method for modelling, optimization and control of an anti-solvent crystallization process[J]. Chemical Engineering Science, 2020, 211: 115253. |
88 | Jiang X B, Tuo L H, Lu D P, et al. Progress in membrane distillation crystallization: process models, crystallization control and innovative applications[J]. Frontiers of Chemical Science and Engineering, 2017, 11(4): 647-662. |
89 | 李冠男, 贺高红, 姜晓滨. 膜结晶处理高浓度Na+、Mg2+//Cl--H2O溶液的结晶调控[J]. 化工学报, 2019, 70(9): 3412-3420. |
Li G N, He G H, Jiang X B, et al. Treatment of high concentration Na+, Mg2+//Cl--H2O solution and crystallization control via membrane distillation crystallization[J]. CIESC Journal, 2019, 70(9): 3412-3420. | |
90 | Drioli E, Profio G D, Curcio E. Progress in membrane crystallization[J]. Current Opinion in Chemical Engineering, 2011, 1(2): 178-182. |
91 | Das P, Dutta S, Singh K K K, et al. Energy saving integrated membrane crystallization: a sustainable technology solution[J]. Separation and Purification Technology, 2019, 228: 115722. |
92 | Ismail A F, Goh P S, Sanip S M, et al. Transport and separation properties of carbon nanotube-mixed matrix membrane[J]. Separation and Purification Technology, 2009, 70(1): 12-26. |
93 | Francis L, Ghaffour N, Al-Saadi A S, et al. Performance of different hollow fiber membranes for seawater desalination using membrane distillation[J]. Desalination and Water Treatment, 2015, 55(10): 2786-2791. |
94 | Nakoa K, Date A, Akbarzadeh A, et al. A research on water desalination using membrane distillation[J]. Desalination and Water Treatment, 2014, 56(10): 2618–2630. |
95 | Pangarkar B L, Sane M G, Parjane S B, et al. Status of membrane distillation for water and wastewater treatment—a review [J]. Desalination and Water Treatment, 2013, 52(28/29/30): 5199–5218. |
96 | 唐娜. 热致相分离聚丙烯平板微孔膜的研制及其膜蒸馏特性研究[D]. 天津: 天津大学, 2004. |
Tang N. Development of polypropylene fast sheet microporous membrane via thermally induced phase separation and performance of membrane distillation[D]. Tianjin: Tianjin University, 2004. | |
97 | Pantoja C E, Nariyoshi Y N, Seckler M M. Membrane distillation crystallization applied to brine desalination: a hierarchical design procedure[J]. Industrial & Engineering Chemistry Research, 2015, 54(10): 2776-2793. |
98 | Duong H C, Cooper P, Nelemans B, et al. Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination[J]. Desalination, 2015, 374: 1-9. |
99 | 孙勇. 含高浓度盐有机废水膜蒸馏脱盐及膜性能改进研究[D]. 沈阳: 沈阳工业大学, 2019. |
Sun Y. Desalination from organic wastewater containing high concentration salt by membrane distillation and the improvement of membrane performance[D]. Shenyang: Shenyang University of Technology, 2019. | |
100 | Hausmann A, Sanciolo P, Vasiljevic T, et al. Fouling mechanisms of dairy streams during membrane distillation[J]. Journal of Membrane Science, 2013, 441: 102-111. |
101 | Shao Y S, Han M G, Wang Y Q, et al. Superhydrophobic polypropylene membrane with fabricated antifouling interface for vacuum membrane distillation treating high concentration sodium/magnesium saline water[J]. Journal of Membrane Science, 2019, 579: 240-252. |
102 | Lu D P, Li P, Xiao W, et al. Simultaneous recovery and crystallization control of saline organic wastewater by membrane distillation crystallization[J]. AIChE Journal, 2017, 63(6): 2187-2197. |
103 | Jiang X B, Li G N, Lu D P, et al. Hybrid control mechanism of crystal morphology modification for ternary solution treatment via membrane assisted crystallization[J]. Crystal Growth & Design, 2017, 18(2): 934-943. |
104 | Jiang X B, Lu D P, Xiao W, et al. Interface-based crystal particle autoselection via membrane crystallization: from scaling to process control[J]. AIChE Journal, 2019, 65(2): 723-733. |
105 | 陈桂光, 孙永, 蒲煜, 等. 陶瓷微滤膜分散传质性能[J]. 化工学报, 2002, 53(6): 644-647. |
Chen G G, Sun Y, Pu Y, et al. Mass transfer characteristics with ceramic microporous membrane as dispersion medium[J]. Journal of Chemical Industry and Engineering (China), 2002, 53(6): 644-647. | |
106 | Chen G G, Luo G S, Xu J H, et al. Membrane dispersion precipitation method to prepare nanopartials[J]. Powder Technology, 2004, 139(2): 180-185. |
107 | Chen G G, Luo G S, Li S W, et al. Experimental approaches for understanding mixing performance of a minireactor[J]. AIChE Journal, 2005, 51(11): 2923-2929. |
108 | Wang Y J, Zhang C L, Bi S W, et al. Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor[J]. Powder Technology, 2010, 202(1/2/3): 130-136. |
109 | Wang J C, Zhang F, Wang Y J, et al. A size-controllable preparation method for indium tin oxide particles using a membrane dispersion micromixer[J]. Chemical Engineering Journal, 2016, 293: 1-8. |
110 | Yao H B, Wang Y J, Luo G S. A size-controllable precipitation method to prepare CeO2 nanoparticles in a membrane dispersion microreactor[J]. Industrial & Engineering Chemistry Research, 2017, 56(17): 4993-4999. |
111 | Chen D Y, Singh D, Sirkar K K. Continuous synthesis of polymer-coated drug particles by porous hollow fiber membrane-based antisolvent crystallization[J]. Langmuir, 2015, 31(1): 432-441. |
112 | Zarkadas D M, Sirkar K K. Antisolvent crystallization in porous hollow fiber devices[J]. Chemical Engineering Science, 2006, 61(15): 5030-5048. |
113 | Kieffer R, Mangin D, Puel F, et al. Precipitation of barium sulphate in a hollow fiber membrane contactor (Ⅱ): The influence of process parameters[J]. Chemical Engineering Science, 2009, 64(8): 1885-1891. |
114 | Chen D Y, Singh D, Sirkar K K. Porous hollow fiber membrane-based continuous technique of polymer coating on submicron and nanoparticles via antisolvent crystallization[J]. Industrial & Engineering Chemistry Research, 2015, 54(19): 5237-5245. |
115 | Fern J C W, Ohsaki S, Watano S, et al. Continuous synthesis of nano-drug particles by antisolvent crystallization using a porous hollow-fiber membrane module[J]. International Journal of Pharmaceutics, 2018, 543(1/2): 139-150. |
116 | Chen D Y, Wang B, Sirkar K K. Hydrodynamic modeling of porous hollow fiber anti-solvent crystallizer for continuous production of drug crystals[J]. Journal of Membrane Science, 2018, 556: 185-195. |
117 | 盛磊, 脱凌晗, 姜晓滨, 等. 有机膜精确调控传质的新型溶析结晶及过程强化[J]. 化工进展, 2020, 39(5): 1692-1700. |
Sheng L, Tuo L H, Jiang X B, et al. Novel antisolvent crystallization and process intensification via the accurate mass transfer control of the organic membrane[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1692-1700. | |
118 | Sheng L, Lin J, He G H, et al. Visual study and simulation of interfacial liquid layer mass transfer in membrane-assisted antisolvent crystallization[J]. Chemical Engineering Science, 2020, 228: 116003. |
119 | 李倩, 徐进良, 毛文彬, 等. 微混合器的研究进展[J]. 化工进展, 2009, 28(6): 922-932. |
Lin Q, Xu J L, Mao W B, et al. Recent progress in micromixers[J]. Chemical Industry and Engineering Progress, 2009, 28(6): 922-932. |
[1] | 苏伟, 马东旭, 金旭, 刘忠彦, 张小松. 表面润湿性对霜层传递特性影响可视化实验研究[J]. 化工学报, 2023, 74(S1): 122-131. |
[2] | 陈爱强, 代艳奇, 刘悦, 刘斌, 吴翰铭. 基板温度对HFE7100液滴蒸发过程的影响研究[J]. 化工学报, 2023, 74(S1): 191-197. |
[3] | 谈莹莹, 刘晓庆, 王林, 黄鲤生, 李修真, 王占伟. R1150/R600a自复叠制冷循环开机动态特性实验研究[J]. 化工学报, 2023, 74(S1): 213-222. |
[4] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[5] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[6] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[7] | 汪尔奇, 彭书舟, 杨震, 段远源. 含HFO混合体系气液相平衡的理论模型评价[J]. 化工学报, 2023, 74(8): 3216-3225. |
[8] | 黄可欣, 李彤, 李桉琦, 林梅. 加装旋转叶轮T型通道流场的模态分解[J]. 化工学报, 2023, 74(7): 2848-2857. |
[9] | 张艳梅, 袁涛, 李江, 刘亚洁, 孙占学. 高效SRB混合菌群构建及其在酸胁迫条件下的性能研究[J]. 化工学报, 2023, 74(6): 2599-2610. |
[10] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[11] | 党玉荣, 莫春兰, 史科锐, 方颖聪, 张子杨, 李作顺. 综合评价模型联合遗传算法的混合工质ORC系统性能研究[J]. 化工学报, 2023, 74(5): 1884-1895. |
[12] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[13] | 王皓, 唐思扬, 钟山, 梁斌. MEA吸收CO2富液解吸过程中固体颗粒表面的强化作用分析[J]. 化工学报, 2023, 74(4): 1539-1548. |
[14] | 葛运通, 王玮, 李楷, 肖帆, 于志鹏, 宫敬. 多相分散体系中微油滴与改性二氧化硅表面间作用力的AFM研究[J]. 化工学报, 2023, 74(4): 1651-1659. |
[15] | 刘倩, 曹禹, 周琦, 穆景山, 历伟. 孔道结构修饰的Ziegler-Natta催化剂设计与高抗冲低缠结UHMWPE的制备[J]. 化工学报, 2023, 74(3): 1092-1101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||