化工学报 ›› 2021, Vol. 72 ›› Issue (1): 597-608.DOI: 10.11949/0438-1157.20201078
于富强1(),杜健军1,2(),路杨1,马贺1,樊江莉1,2,孙文1,2,龙飒然1,2,彭孝军1
收稿日期:
2020-07-31
修回日期:
2020-11-04
出版日期:
2021-01-05
发布日期:
2021-01-05
通讯作者:
杜健军
作者简介:
于富强(1995—),男,硕士研究生,基金资助:
YU Fuqiang1(),DU Jianjun1,2(),LU Yang1,MA He1,FAN Jiangli1,2,SUN Wen1,2,LONG Saran1,2,PENG Xiaojun1
Received:
2020-07-31
Revised:
2020-11-04
Online:
2021-01-05
Published:
2021-01-05
Contact:
DU Jianjun
摘要:
铜酞菁是一类具有优异光物理性质和良好光热稳定性的染料,在印染、太阳能电池、传感器等领域中应用广泛。血清白蛋白作为血液中主要的转运蛋白,常用于小分子和药物的负载和运输。通过牛血清白蛋白(BSA)和铜酞菁类染料(LGS-CuPc)的自组装,构建了LGS-CuPc-BSA纳米粒子(LGS-CuPc-BSA NPs),研究了其作为光动力和光热一体化试剂在光疗中的作用。在671 nm光照下(800 mW·cm-2),LGS-CuPc-BSA NPs活性氧产率达到23.3%,光热转换效率为36.8%。与LGS-CuPc比较,LGS-CuPc-BSA NPs光动力和光热治疗效果明显提升,且表现出较低的细胞毒性、良好的生物相容性以及在肿瘤细胞线粒体的定位能力,实现对肿瘤细胞的有效杀伤。
中图分类号:
于富强, 杜健军, 路杨, 马贺, 樊江莉, 孙文, 龙飒然, 彭孝军. 血清白蛋白-铜酞菁纳米粒子用于线粒体靶向光疗[J]. 化工学报, 2021, 72(1): 597-608.
YU Fuqiang, DU Jianjun, LU Yang, MA He, FAN Jiangli, SUN Wen, LONG Saran, PENG Xiaojun. Fabrication of serum albumin-copper phthalocyanine nanoparticles for mitochondria-targeted phototherapy[J]. CIESC Journal, 2021, 72(1): 597-608.
图1 用于线粒体靶向光疗的血清白蛋白-铜酞菁(LGS-CuPc-BSA)纳米粒子的制备及光疗过程
Fig.1 Schematic illustration of preparation of LGS-CuPc-BSA NPs for mitochondrial targeted phototherapy
图2 LGS-CuPc 和LGS-CuPc-BSA NPs的吸收光谱(a)和LGS-CuPc-BSA NPs的透射电镜图(b)
Fig.2 UV–vis absorption spectra of LGS-CuPc and LGS-CuPc-BSA NPs (a) and TEM image of LGS-CuPc-BSA NPs (b)
图3 在DMF中DPBF检测MB(a)、LGS-CuPc(b)、LGS-CuPc-BSA NPs(c)体系ROS的产生;MB、LGS-CuPc和LGS-CuPc-BSA NPs的时间与吸收的线性关系(d)
Fig.3 Singlet-oxygen generation of MB(a), LGS-CuPc(b), LGS-CuPc-BSA NPs (c) in DMF with DPBF, and the linear relationship between time and absorption of MB, LGS- CuPc, and LGS-CuPc-BSA NPs (d)
图4 光照(671 nm,800 mW·cm-2)不同浓度的LGS-CuPc(a)和LGS-CuPc-BSA NPs(b)的光热曲线温度变化,LGS-CuPc-BSA NPs五个循环的温度变化(每个循环20 min) (c)和τ值的计算曲线(d)
Fig.4 Photothermal heating curves for the change of temperature with time in different concentrations (20, 30, and 40 μmol·L-1) of LGS-CuPc (a), LGS-CuPc-BSA NPs irradiated by 671 nm laser (800 mW·cm-2) (b). The temperature variations of LGS-CuPc-BSA NPs for 5 cycles (20 min per cycle) (c). Calculation of τ value (d)
图5 在671 nm(800 mW·cm-2)激光照射10 min下经不同浓度的LGS-CuPc-BSA NPs(a)和LGS-CuPc(b)处理的细胞活性
Fig.5 Cell viabilities after treatments with different concentrations of LGS-CuPc-BSA NPs (a) and LGS-CuPc (b) with and without 671 nm (800 mW·cm-2) laser irradiation for 10 min
图6 经LGS-CuPc-BSA NPs和LGS-CuPc孵育的AM,PI双染共聚焦成像
Fig.6 Confocal images of co-stained MCF-7 cells with AM and PI in the presence of LGS-CuPc-BSA NPs and LGS-CuPc
1 | Li M, Xia J, Tian R, et al. Near-infrared light-initiated molecular superoxide radical generator: rejuvenating photodynamic therapy against hypoxic tumors[J]. Journal of the American Chemical Society, 2018, 140(44): 14851-14859. |
2 | 汪凌云, 曹德榕. 卟啉类光敏剂在光动力治疗中的应用研究[J]. 有机化学, 2012, 32: 2248-2264. |
Wang L Y, Cao D R. Application of porphyrin photosensitizer in photodynamic therapy[J]. Organic Chemistry, 2012, 32: 2248-2264. | |
3 | Zou Y, Li M, Xiong T, et al. A single molecule drug targeting photosensitizer for enhanced breast cancer photothermal therapy[J]. Small, 2020, 16(18): 1907677. |
4 | Tang W, Yang Z, Wang S, et al. Organic semiconducting photoacoustic nanodroplets for laser-activatable ultrasound imaging and combinational cancer therapy[J]. ACS Nano, 2018, 12(3): 2610-2622. |
5 | Feng L, Tao D, Dong Z, et al. Near-infrared light activation of quenched liposomal Ce6 for synergistic cancer phototherapy with effective skin protection[J]. Biomaterials, 2017, 127: 13-24. |
6 | Han Y, Chen Z, Zhao H, et al. Oxygen-independent combined photothermal/photodynamic therapy delivered by tumor acidity-responsive polymeric micelles[J]. Journal of Controlled Release, 2018, 284: 15-25. |
7 | Lu W, Lan Y, Xiao K, et al. BODIPY-Mn nanoassemblies for accurate MRI and phototherapy of hypoxic cancer[J]. Journal of Materials Chemistry B, 2017, 5(6): 1275-1283. |
8 | Zhang Z, Wang J, Nie X, et al. Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods[J]. Journal of the American Chemical Society, 2014, 136(20): 7317-7326. |
9 | Jiang B, Hu L, Shen X, et al. One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy[J]. ACS Applied Materials & Interfaces, 2014, 6(20): 18008-18017. |
10 | Wu F, Lu Y, Mu X, et al. Intriguing H-aggregates of heptamethine cyanine for imaging-guided photothermal cancer therapy[J]. ACS Applied Materials & Interfaces, 2020, 12(29): 32388-32396. |
11 | Liang S, Deng X, Xu G, et al. A novel Pt-TiO2 heterostructure with oxygen-deficient layer as bilaterally enhanced sonosensitizer for synergistic chemo-sonodynamic cancer therapy[J]. Advanced Functional Materials, 2020, 30(13): 1908598. |
12 | 徐延明, 赵明, 李坚, 等. 氨基酞菁-二氧化钛可见-近红外光催化剂的制备及其性能[J]. 化工学报, 2016, 67(5): 1915-1921. |
Xu Y M, Zhao M, Li J, et al. Preparation and performance of aminophthalocyanine-titanium dioxide visible-near infrared photocatalyst[J]. CIESC Journal, 2016, 67(5): 1915-1921. | |
13 | 丁兰兰, 栾立强, 施佳伟, 等. 酞菁在光动力治疗中的应用[J]. 无机化学学报, 2013, 29(8): 1591-1598. |
Ding L L, Luan L Q, Shi J W, et al. Application of phthalocyanine in photodynamic therapy[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(8): 1591-1598. | |
14 | 李明乐, 彭孝军. 靶标性酞菁类光敏剂的光动力疗法研究进展[J]. 化学学报, 2016, 74: 959-968. |
Li M L, Peng X J. Research progress in photodynamic therapy of targeted phthalocyanine photosensitizers[J]. Acta Chimica Sinica, 2016, 74: 959-968. | |
15 | Li X, Wen J, Zhang Y, et al. In vitro and in vivo evaluation of improved EGFR targeting peptide-conjugated phthalocyanine photosensitizers for tumor photodynamic therapy[J].Chinese Chemical Letters, 2018, 29(6): 1171-1178. |
16 | Li X, Yu S, Lee D, et al. Facile supramolecular approach to nucleic-acid-driven activatable nanotheranostics that overcome drawbacks of photodynamic therapy[J]. ACS Nano, 2018, 12(1): 681-688. |
17 | Li X, Peng X, Zheng B, et al. New application of phthalocyanine molecules: from photodynamic therapy to photothermal therapy by means of structural regulation rather than formation of aggregates[J]. Chemical Science, 2018, 9(8): 2098-2104. |
18 | Jiang B, Hu L, Wang D, et al. Graphene loading water-soluble phthalocyanine for dual-modality photothermal/photodynamic therapy via a one-step method[J]. J. Mater. Chem. B, 2014, 2(41): 7141-7148. |
19 | Zhu Q, Chen X, Xu X, et al. Tumor-specific self-degradable nanogels as potential carriers for systemic delivery of anticancer proteins[J]. Advanced Functional Materials, 2018, 28(17): 1707371. |
20 | Peng S, Wang H, Zhao W, et al. Zwitterionic polysulfamide drug nanogels with microwave augmented tumor accumulation and on‐demand drug release for enhanced cancer therapy[J]. Advanced Functional Materials, 2020, 30(23): 2001832. |
21 | Yang H, Wang Q, Li Z, et al. Hydrophobicity-adaptive nanogels for programmed anticancer drug delivery[J]. Nano Letters, 2018, 18(12): 7909-7918. |
22 | Li Y, Hong W, Zhang H, et al. Photothermally triggered cytosolic drug delivery of glucose functionalized polydopamine nanoparticles in response to tumor microenvironment for the GLUT1-targeting chemo-phototherapy[J]. Journal of Controlled Release, 2020, 317: 232-245. |
23 | Xu T, Li J, Cheng F, et al. Fabrication of a polypseudorotaxane nanoparticle with synergistic photodynamic and chemotherapy[J]. Chinese Chemical Letters, 2017, 28(9): 1885-1888. |
24 | Li J, Huang J, Lyu Y, et al. Photoactivatable organic semiconducting pro-nanoenzymes[J]. Journal of the American Chemical Society, 2019, 141(9): 4073-4079. |
25 | Meng X, Zhang B, Yi Y, et al. Accurate and real-time temperature monitoring during MR imaging guided PTT[J]. Nano Letters, 2020, 20(4): 2522-2529. |
26 | Zeng Q, Zhang R, Zhang T, et al. H2O2-responsive biodegradable nanomedicine for cancer-selective dual-modal imaging guided precise photodynamic therapy[J]. Biomaterials, 2019, 207: 39-48. |
27 | Cui H, Hu D, Zhang J, et al. Theranostic gold cluster nanoassembly for simultaneous enhanced cancer imaging and photodynamic therapy[J]. Chinese Chemical Letters, 2017, 28(7): 1391-1398. |
28 | Du J, Zhang Y, Ge H, et al. Ultrasound-degradable serum albumin nanoplatform for in situ controlled drug release[J]. Chemical Communications, 2020, 56(54): 7503-7506. |
29 | Hu T, Liu Y. Probing the interaction of cefodizime with human serum albumin using multi-spectroscopic and molecular docking techniques[J]. Journal of Pharmaceutical and Biomedical Analysis, 2015, 107: 325-332. |
30 | Lu W, Lan Y, Xiao K, et al. BODIPY-Mn nanoassemblies for accurate MRI and phototherapy of hypoxic cancer[J]. Journal of Materials Chemistry B, 2017, 5(6): 1275-1283. |
31 | Liu X, Tian K, Zhang J, et al. Smart NIR-light-mediated nanotherapeutic agents for enhancing tumor accumulation and overcoming hypoxia in synergistic cancer therapy[J]. ACS Applied Bio Materials, 2019, 2(3): 1225-1232. |
32 | Lleonart M E, Grodzicki R, Graifer D M, et al. Mitochondrial dysfunction and potential anticancer therapy[J]. Medicinal Research Reviews, 2017, 37(6): 1275-1298. |
33 | Shi C, Li M, Zhang Z, et al. Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy[J]. Biomaterials, 2020, 233: 119755. |
34 | 李晓静, 孙文, 康垚, 等. PEG化羟基磷灰石纳米体系的制备及双通道荧光成像[J]. 化工学报, 2020, 71(10): 4808-4819. |
Li X J, Sun W, Kang Y, et al. Synthesis of PEGylation hydroxyapatite drug delivery system and its dual channels fluorescence imaging[J]. CIESC Journal, 2020, 71(10): 4808-4819. | |
35 | Xu F, Li H, Yao Q, et al. Hypoxia-activated NIR photosensitizer anchoring in the mitochondria for photodynamic therapy[J]. Chemical Science, 2019, 10(45): 10586-10594. |
36 | Lu Y, Li H, Yao Q, et al. Lysozyme-targeted ratiometric fluorescent probe for SO2 in living cells[J]. Dyes and Pigments, 2020, 180: 108440. |
37 | 李海东. 长波长腈类荧光染料用于肿瘤的诊断与治疗[D]. 大连: 大连理工大学, 2019. |
Li H D. Long wavelength nitrile fluorescent dyes for tumor diagnosis and treatment[D]. Dalian: Dalian University of Technology, 2019. | |
38 | Zhang C, Wu J, Liu W, et al. Natural-origin hypocrellin-hsa assembly for highly efficient NIR light-responsive phototheranostics against hypoxic tumors[J]. ACS Applied Materials & Interfaces, 2019, 11(48): 44989-44998. |
39 | Yu X, Deng Y, Zhang G, et al. Sorafenib-conjugated zinc phthalocyanine based nanocapsule for trimodal therapy in an orthotopic hepatocellular carcinoma xenograft mouse model[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 17193-17206. |
40 | Zhang J, Zheng M, Xie Z. Co-assembled hybrids of proteins and carbon dots for intracellular protein delivery[J]. Journal of Materials Chemistry B, 2016, 4(34): 5659-5663. |
41 | Jia Q, Ge J, Liu W, et al. Gold nanorod@silica-carbon dots as multifunctional phototheranostics for fluorescence and photoacoustic imaging-guided synergistic photodynamic/photothermal therapy[J]. Nanoscale, 2016, 8(26): 13067-13099. |
42 | Mandal S, Prasad S R, Mandal D, et al. Bovine serum albumin amplified reactive oxygen species generation from anthrarufin-derived carbon dot and concomitant nanoassembly for combination antibiotic–photodynamic therapy application[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33273-33284. |
43 | 康垚, 王素真, 樊江莉, 等. 无机纳米药物载体在肿瘤诊疗中的研究进展[J]. 化工学报, 2018, 69(1): 128-140. |
Kang Y, Wang S Z, Fan J L, et al. Progress in inorganic nanomedicine carriers for tumor diagnosis and treatments[J]. CIESC Journal, 2018, 69(1): 128-140. | |
44 | Jia Q, Ge J, Liu W, et al. Biocompatible iron phthalocyanine–albumin assemblies as photoacoustic and thermal theranostics in living mice[J]. ACS Applied Materials & Interfaces, 2017, 9(25): 21124-21132. |
45 | Yao Q, Li L, Huang X, et al. Photostable fluorescent tracker for imaging mitochondria with super resolution[J]. Analytical Chemistry, 2019, 91(24): 15777-15783. |
46 | Zhang L, Wang D, Yang K, et al. Mitochondria-targeted artificial “Nano-RBCs” for amplified synergistic cancer phototherapy by a single NIR irradiation[J]. Advanced Science, 2018, 5(8): 1800049. |
47 | Yang Z, Wang J, Liu S, et al. Defeating relapsed and refractory malignancies through a nano-enabled mitochondria-mediated respiratory inhibition and damage pathway[J]. Biomaterials, 2020, 229: 119580. |
48 | Yang L, Gao P, Huang Y, et al. Boosting the photodynamic therapy efficiency with a mitochondria-targeted nanophotosensitizer[J]. Chinese Chemical Letters, 2019, 30(6): 1293-1296. |
[1] | 刘远超, 关斌, 钟建斌, 徐一帆, 蒋旭浩, 李耑. 单层XSe2(X=Zr/Hf)的热电输运特性研究[J]. 化工学报, 2023, 74(9): 3968-3978. |
[2] | 陈佳起, 赵万玉, 姚睿充, 侯道林, 董社英. 开心果壳基碳点的合成及其对Q235碳钢的缓蚀行为研究[J]. 化工学报, 2023, 74(8): 3446-3456. |
[3] | 邢美波, 张中天, 景栋梁, 张洪发. 磁调控水基碳纳米管协同多孔材料强化相变储/释能特性[J]. 化工学报, 2023, 74(7): 3093-3102. |
[4] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[5] | 葛加丽, 管图祥, 邱新民, 吴健, 沈丽明, 暴宁钟. 垂直多孔碳包覆的FeF3正极的构筑及储锂性能研究[J]. 化工学报, 2023, 74(7): 3058-3067. |
[6] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[7] | 杨琴, 秦传鉴, 李明梓, 杨文晶, 赵卫杰, 刘虎. 用于柔性传感的双形状记忆MXene基水凝胶的制备及性能研究[J]. 化工学报, 2023, 74(6): 2699-2707. |
[8] | 刘远超, 蒋旭浩, 邵钶, 徐一帆, 钟建斌, 李耑. 几何尺寸及缺陷对石墨炔纳米带热输运特性的影响[J]. 化工学报, 2023, 74(6): 2708-2716. |
[9] | 刘昕, 戈钧, 李春. 光驱动微生物杂合系统提高生物制造水平[J]. 化工学报, 2023, 74(1): 330-341. |
[10] | 张静, 刘涛, 张伟, 储震宇, 金万勤. 一种新型分离传感膜的制备及其血糖的动态监测[J]. 化工学报, 2023, 74(1): 459-468. |
[11] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
[12] | 张浩, 王子悦, 程钰洁, 何晓辉, 纪红兵. 单原子催化剂规模化制备的研究进展[J]. 化工学报, 2023, 74(1): 276-289. |
[13] | 邵健, 冯军宗, 柳凤琦, 姜勇刚, 李良军, 冯坚. 酚醛树脂基炭微球结构调控与功能化制备研究进展[J]. 化工学报, 2022, 73(9): 3787-3801. |
[14] | 张婉晨, 陈晓阳, 吕秋秋, 钟秦, 朱腾龙. Co掺杂SrTi0.3Fe0.7O3-δ 阳极SOFC在化工副产气燃料下的性能及稳定性[J]. 化工学报, 2022, 73(9): 4079-4086. |
[15] | 彭琳, 牛明鑫, 白羽, 孙克宁. 中空硫球-MoS2/rGO材料的制备及其在锂硫电池中的应用[J]. 化工学报, 2022, 73(8): 3688-3698. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||