1 |
Deb S, Pal S, Das D C, et al. Surface wettability change on TF nanocoated surfaces during pool boiling heat transfer of refrigerant R-141b[J]. Heat and Mass Transfer, 2020, 56(12): 3273-3287.
|
2 |
Hsu C C, Chen P H. Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings[J]. International Journal of Heat and Mass Transfer, 2012, 55(13/14): 3713-3719.
|
3 |
Phan H T, Caney N, Marty P, et al. Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24): 5459-5471.
|
4 |
Kumar V, Gajghate S S, Nath U, et al. Experimental studies on nucleate pool boiling heat transfer enhancement for composite nano-structure coated copper heating surface[J]. Journal of Physics: Conference Series, 2019, 1240: 012055.
|
5 |
Quan X J, Wang D M, Cheng P. An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid[J]. International Journal of Heat and Mass Transfer, 2017, 108: 32-40.
|
6 |
Zhao Z C, Zhang J J, Jia D D, et al. Thermal performance analysis of pool boiling on an enhanced surface modified by the combination of microstructures and wetting properties[J]. Applied Thermal Engineering, 2017, 117: 417-426.
|
7 |
Zhang L, Wang T, Jiang Y Y, et al. A study of boiling on surfaces with temperature-dependent wettability by lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2018, 122: 775-784.
|
8 |
Dong L N, Quan X J, Cheng P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures[J]. International Journal of Heat and Mass Transfer, 2014, 71: 189-196.
|
9 |
Kim S H, Lee G C, Kang J Y, et al. Boiling heat transfer and critical heat flux evaluation of the pool boiling on micro structured surface[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1140-1147.
|
10 |
Wei J J, Guo L J, Honda H. Experimental study of boiling phenomena and heat transfer performances of FC-72 over micro-pin-finned silicon chips[J]. Heat and Mass Transfer, 2005, 41(8): 744-755.
|
11 |
Zhang Y H, Wei J J, Xue Y F, et al. Bubble dynamics in nucleate pool boiling on micro-pin-finned surfaces in microgravity[J]. Applied Thermal Engineering, 2014, 70(1): 172-182.
|
12 |
Gouws G J, Sherson B, Sinnathambi A, et al. Influence of structure and wettability of porous silver surfaces on enhancing phase change heat transfer[C]//2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). San Diego, CA, 2018: 134-140.
|
13 |
Može M, Senegačnik M, Gregorčič P, et al. Laser-engineered microcavity surfaces with a nanoscale superhydrophobic coating for extreme boiling performance[J]. ACS Applied Materials & Interfaces, 2020, 12(21): 24419-24431.
|
14 |
Zhang W, Chai Y Z, Xu J L, et al. 3D heterogeneous wetting microchannel surfaces for boiling heat transfer enhancement[J]. Applied Surface Science, 2018, 457: 891-901.
|
15 |
Zhang B J, Kim K J, Yoon H. Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling[J]. International Journal of Heat and Mass Transfer, 2012, 55(25/26): 7487-7498.
|
16 |
陈彦君. 电场强化纳米流体换热特性的实验与数值模拟研究[D]. 上海: 上海交通大学, 2016.
|
|
Chen Y J. Experimental and numerical study of the heat transfer characteristics of nanofluids under high electric field[D]. Shanghai: Shanghai Jiao Tong University, 2016.
|
17 |
Asadzadeh F, Esfahany M N, Etesami N. Natural convective heat transfer of Fe3O4/ethylene glycol nanofluid in electric field[J]. International Journal of Thermal Sciences, 2012, 62: 114-119.
|
18 |
黄浩. 纳米金刚石和石墨烯的表面修饰及其电泳行为研究[D]. 秦皇岛: 燕山大学, 2012.
|
|
Huang H. Study on surface modification and electrophoresis behavior for nanodiamond and graphene[D]. Qinhuangdao: Yanshan University, 2012.
|
19 |
Zhou Z, Shi J X, Chen H H, et al. Two-phase flow over flooded micro-pillar structures with engineered wettability pattern[J]. International Journal of Heat and Mass Transfer, 2014, 71: 593-605.
|
20 |
Zou L, Wang H, Zhu X, et al. Active effect of super-hydrophobicity on droplet nucleate boiling[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119942.
|
21 |
Jo H, Kim S, Park H S, et al. Critical heat flux and nucleate boiling on several heterogeneous wetting surfaces: controlled hydrophobic patterns on a hydrophilic substrate[J]. International Journal of Multiphase Flow, 2014, 62: 101-109.
|
22 |
Motezakker A R, Sadaghiani A K, Çelik S, et al. Optimum ratio of hydrophobic to hydrophilic areas of biphilic surfaces in thermal fluid systems involving boiling[J]. International Journal of Heat and Mass Transfer, 2019, 135: 164-174.
|
23 |
Betz A R, Jenkins J, Kim C J, et al. Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces[J]. International Journal of Heat and Mass Transfer, 2013, 57(2): 733-741.
|
24 |
Chen X D, Qiu H H. Bubble dynamics and heat transfer on a wettability patterned surface[J]. International Journal of Heat and Mass Transfer, 2015, 88: 544-551.
|
25 |
Jo H, Yu D I, Noh H, et al. Boiling on spatially controlled heterogeneous surfaces: wettability patterns on microstructures[J]. Applied Physics Letters, 2015, 106(18): 181602.
|
26 |
Li W X, Li Q, Yu Y, et al. Enhancement of nucleate boiling by combining the effects of surface structure and mixed wettability: a lattice Boltzmann study[J]. Applied Thermal Engineering, 2020, 180: 115849.
|
27 |
陈宏霞, 孙源, 宫逸飞, 等. 单晶硅表面池沸腾可视化测量及数据分析[J]. 化工学报, 2019, 70(4): 1309-1317.
|
|
Chen H X, Sun Y, Gong Y F, et al. Visual measurement and data analysis of pool boiling on silicon surfaces[J]. CIESC Journal, 2019, 70(4): 1309-1317.
|
28 |
Chen H X, Sun Y, Xiao H Y, et al. Bubble dynamics and heat transfer characteristics on a micropillar-structured surface with different nucleation site positions[J]. Journal of Thermal Analysis and Calorimetry, 2020, 141(1): 447-464.
|
29 |
陈宏霞, 孙源, 肖红洋, 等. 微柱结构表面核态沸腾单气泡的数值模拟[J]. 化工进展, 2019, 38(11): 4845-4855.
|
|
Chen H X, Sun Y, Xiao H Y, et al. Numerical simulation of single bubble boiling on micro-pillar structure surface[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4845-4855.
|
30 |
Utaka Y, Kashiwabara Y, Ozaki M, et al. Heat transfer characteristics based on microlayer structure in nucleate pool boiling for water and ethanol[J]. International Journal of Heat and Mass Transfer, 2014, 68: 479-488.
|
31 |
Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225.
|
32 |
Chen H X, Sun Y, Li L H, et al. Bubble dynamics and heat transfer performance on micro-pillars structured surfaces with various Pillars heights[J]. International Journal of Heat and Mass Transfer, 2020, 163: 120502.
|