化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 371-381.DOI: 10.11949/0438-1157.20201130
收稿日期:
2020-08-10
修回日期:
2021-01-15
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
范晶
作者简介:
宋粉红(1983—),女,博士,副教授,基金资助:
SONG Fenhong1(),WANG Wei1,2,CHEN Qicheng1,FAN Jing1()
Received:
2020-08-10
Revised:
2021-01-15
Online:
2021-06-20
Published:
2021-06-20
Contact:
FAN Jing
摘要:
乳状液破乳分离是目前高含水期油田开采过程中难以解决的技术问题,电场破乳方法具有高效清洁等优点,是解决该问题的有效手段。采用数值模拟与试验验证相结合的方法研究电脱水过程中阶跃、斜坡电场诱导下双液滴的聚合与分离特性。结果表明,在斜坡电场作用下,界面张力引起的泵吸作用大于电场力引起的颈缩作用,有利于液滴聚并,且液滴发生二次乳化现象的概率降低。而施加阶跃电场时,一定范围内能够达到液滴破乳的目的,但液滴在聚并过程中易发生二次乳化现象。从电场对连续相影响的角度分析发现,阶跃电场不仅对液滴具有驱动作用,对连续相的影响也较为明显,阶跃电场会增大连续相内湍流作用,不利于电脱水过程。因此,采用斜坡信号诱导液滴聚合能够降低二次乳化现象发生的概率。
中图分类号:
宋粉红, 王伟, 陈奇成, 范晶. 电场作用下双液滴聚合特性[J]. 化工学报, 2021, 72(S1): 371-381.
SONG Fenhong, WANG Wei, CHEN Qicheng, FAN Jing. Coalescence characteristics of the double droplets under electric field[J]. CIESC Journal, 2021, 72(S1): 371-381.
1 | 袁晴棠. 中国劣质原油加工技术进展与展望[J]. 当代石油石化, 2007, 15(12): 1-6, 49. |
Yuan Q T. Technical advances in China's bad crude oil processing and its prospect [J]. Petroleum & Petrochemical Today, 2007, 15(12): 1-6, 49. | |
2 | Eow J S, Ghadiri M, Sharif A O, et al. Electrostatic enhancement of coalescence of water droplets in oil: a review of the current understanding [J]. Chemical Engineering Journal, 2001, 84(3): 173-192. |
3 | de Gennes P G, Brochard-Wyart F, Quéré D. Capillarity and wetting phenomena: drops, bubbles, pearls, waves [J]. Physics Today, 2004, 57: 66-67. |
4 | Mohammed R A, Bailey A I, Luckham P F, et al. Dewatering of crude oil emulsions (Ⅲ): Emulsion resolution by chemical means [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 83(3): 261-271. |
5 | 陆耀军, 潘玉琦, 薛敦松. 重力式油水分离设备中影响液滴运动的因素[J]. 油田地面工程, 1993, 12(3): 1-5, 4. |
Lu Y J, Pan Y Q, Xue D S. Factors affecting droplet motion in gravity oil-water separation devices [J]. Oilfield Surface Engineering, 1993, 12(3): 1-6. | |
6 | Sun D Z, Chung J S, Duan X D, et al. Demulsification of water-in-oil emulsion by wetting coalescence materials in stirred- and packed-columns [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 150(1/2/3): 69-75. |
7 | 郭子涵, 汪永清, 胡学兵, 等. 热处理温度对氧化石墨烯改性陶瓷膜油水分离性能的影响[J]. 陶瓷学报, 2020, 41(2): 208-212. |
Guo Z H, Wang Y Q, Hu X B, et al. Effect of heat treatment temperature on oil-water separation performance of graphene oxide modified ceramic membrane [J]. Journal of Ceramics, 2020, 41(2): 208-212. | |
8 | Kocherginsky N M, Tan C L, Lu W F. Demulsification of water-in-oil emulsions via filtration through a hydrophilic polymer membrane [J]. Journal of Membrane Science, 2003, 220(1/2): 117-128. |
9 | 孙治谦, 金有海, 王磊, 等. 高频脉冲电场参数对水滴极化变形的影响[J]. 化工学报, 2012, 63(10): 3112-3118. |
Sun Z Q, Jin Y H, Wang L, et al. Impact of high-frequency pulse electric field parameters on polarization and deformation of water droplet [J]. CIESC Journal, 2012, 63(10): 3112-3118. | |
10 | Goto M, Irie J, Kondo K, et al. Electrical demulsification of W/O emulsion by continuous tubular coalescer [J]. Journal of Chemical Engineering of Japan, 1989, 22(4): 401-406. |
11 | Less S, Hannisdal A, Bjørklund E, et al. Electrostatic destabilization of water-in-crude oil emulsions: application to a real case and evaluation of the Aibel VIEC technology [J]. Fuel, 2008, 87(12): 2572-2581. |
12 | Kralova I, Sjöblom J, Øye G, et al. Heavy crude oils/particle stabilized emulsions [J]. Advances in Colloid and Interface Science, 2011, 169(2): 106-127. |
13 | Eow J S, Ghadiri M. Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology [J]. Chemical Engineering Journal, 2002, 85(2/3): 357-368. |
14 | Førdedal H, Schildberg Y, Sjöblom J, et al. Crude oil emulsions in high electric fields as studied by dielectric spectroscopy. Influence of interaction between commercial and indigenous surfactants [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 106(1): 33-47. |
15 | Bailes P J, Larkai S K L. Liquid phase separation in pulsed D. C. fields[J]. Transactions of the Institution of Chemical Engineers, 1982, 60(2):115-121. |
16 | Less S, Hannisdal A, Sjöblom J. Dehydration efficiency of water-in-crude oil emulsions in alternating current electrical fields [J]. Journal of Dispersion Science and Technology, 2010, 31(3): 265-272. |
17 | Bailes P J, Larkai S K L. An experimental investigation into the use of high voltage D. C. fields for liquid phase separation [J]. Transactions of the Institution of Chemical Engineers, 1981, 59(4): 229-237. |
18 | Bailes P J, Larkai S K L. Liquid phase separation in pulsed D. C. fields [J]. Transactions of the Institution of Chemical Engineers, 1982, 60(2): 115-121. |
19 | 李彬, 任瑞娟, 孙治谦, 等. 直流脉冲电场下液滴-界面聚并行为[J]. 化工学报, 2018, 69(2): 815-822. |
Li B, Ren R J, Sun Z Q, et al. Drop-interface electrocoalescence under pulsatile electric fields [J]. CIESC Journal, 2018, 69(2): 815-822. | |
20 | 樊玉新, 李彬, 孙治谦, 等. 无机盐浓度及种类对电脱水过程水滴极化的影响[J]. 化工学报, 2016, 67(8): 3297-3303. |
Fan Y X, Li B, Sun Z Q, et al. Effect of salt concentration and type on polarization and deformation of water droplet during electric dehydration [J]. CIESC Journal, 2016, 67(8): 3297-3303. | |
21 | Bailes P J, Dowling P D. The production of pulsed E. H. T. voltages for electrostatic coalescence [J]. Journal of Electrostatics, 1985, 17(3): 321-328. |
22 | 陈庆国, 宋春辉, 梁雯, 等. 非均匀电场下乳化油中液滴变形动力学行为[J]. 化工学报, 2015, 66(3): 955-964. |
Chen Q G, Song C H, Liang W, et al. Kinetics behavior of water droplet deformation in emulsified oil subjected to non-uniform electric field [J]. CIESC Journal, 2015, 66(3): 955-964. | |
23 | 张军, 何宏舟. 高压静电破乳中离散液滴的动力学分析[J]. 化工学报, 2013, 64(6): 2050-2057. |
Zhang J, He H Z. Dynamics of dispersed droplets in demulsification under high electrical voltage [J]. CIESC Journal, 2013, 64(6): 2050-2057. | |
24 | 张军, 何宏舟, 黄冠星. 均匀电场中液滴变形特性的耗散粒子动力学模拟 [J]. 化工学报, 2014, 65(10): 3872-3877. |
Zhang J, He H Z, Huang G X. Simulation of droplet deformation in uniform electric field with dissipative particle dynamics approach [J]. CIESC Journal, 2014, 65(10): 3872-3877. | |
25 | Lesaint C, Glomm W R, Lundgaard L E, et al. Dehydration efficiency of AC electrical fields on water-in-model-oil emulsions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 352(1/2/3): 63-69. |
26 | Mousavichoubeh M, Shariaty-Niassar M, Ghadiri M. The effect of interfacial tension on secondary drop formation in electro-coalescence of water droplets in oil [J]. Chemical Engineering Science, 2011, 66(21): 5330-5337. |
27 | Mousavichoubeh M, Ghadiri M, Shariaty-Niassar M. Electro-coalescence of an aqueous droplet at an oil-water interface [J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(3): 338-344. |
28 | Mousavi S H, Ghadiri M, Buckley M. Electro-coalescence of water drops in oils under pulsatile electric fields [J]. Chemical Engineering Science, 2014, 120: 130-142. |
29 | 梁猛, 李青, 王奎升, 等. 匀强电场作用下分散相液滴的变形和破裂[J]. 化工学报, 2014, 65(3): 843-848. |
Liang M, Li Q, Wang K S, et al. Deformation and breakup of dispersed phase droplets in uniform electric field [J]. CIESC Journal, 2014, 65(3): 843-848. | |
30 | 梁雯. 不同类型电场下原油乳化液脱水特性研究[D]. 哈尔滨: 哈尔滨理工大学, 2015. |
Liang W. Dehydration characteristics of crude oil emulsion under different electric field types [D]. Harbin: Harbin University of Science and Technology, 2015. | |
31 | 吕宇玲, 田成坤, 何利民, 等. 电场和剪切场耦合作用下双液滴聚结数值模拟[J]. 石油学报, 2015, 36(2): 238-245. |
Lü Y L, Tian C K, He L M, et al. Numerical simulations on the double-droplets coalescence under the coupling effects of electric field and shearing field [J]. Acta Petrolei Sinica, 2015, 36(2): 238-245. | |
32 | Jacqmin D. Calculation of two-phase Navier-Stokes flows using phase-field modeling [J]. Journal of Computational Physics, 1999, 155(1): 96-127. |
33 | Feng J Q. Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric Reynolds number [J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1999, 455(1986): 2245-2269. |
34 | Phan C M, Allen B, Peters L B, et al. Can water float on oil? [J]. Langmuir, 2012, 28(10): 4609-4613. |
35 | Yan H P, He L M, Luo X M, et al. Investigation on transient oscillation of droplet deformation before conical breakup under alternating current electric field [J]. Langmuir, 2015, 31(30): 8275-8283. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[3] | 吴馨, 龚建英, 靳龙, 王宇涛, 黄睿宁. 超声波激励下铝板表面液滴群输运特性的研究[J]. 化工学报, 2023, 74(S1): 104-112. |
[4] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[5] | 周晓庆, 李春煜, 杨光, 蔡爱峰, 吴静怡. 液滴撞击不同曲率过冷波纹面结冰动力学行为及机理研究[J]. 化工学报, 2023, 74(S1): 141-153. |
[6] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[7] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[8] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[9] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[10] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[11] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[12] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[13] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[14] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
[15] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||