化工学报 ›› 2021, Vol. 72 ›› Issue (S1): 302-309.DOI: 10.11949/0438-1157.20201582
海鹏1,2(),李振兴1,李珂1(),黄红梅1,郑文帅1,高新强1,戴巍1,沈俊1()
收稿日期:
2020-11-03
修回日期:
2021-01-23
出版日期:
2021-06-20
发布日期:
2021-06-20
通讯作者:
李珂,沈俊
作者简介:
海鹏(1992—),男,硕士,基金资助:
HAI Peng1,2(),LI Zhenxing1,LI Ke1(),HUANG Hongmei1,ZHENG Wenshuai1,GAO Xinqiang1,DAI Wei1,SHEN Jun1()
Received:
2020-11-03
Revised:
2021-01-23
Online:
2021-06-20
Published:
2021-06-20
Contact:
LI Ke,SHEN Jun
摘要:
借助Comsol多物理场仿真软件构建了一维瞬态磁制冷模型,考察了在特定工况下由3种不同居里温度的磁热工质(a、b、c)所构成的单层、双层和三层回热器,研究了不同填充比例与高温端温度对主动磁回热器的性能影响。仿真结果表明,当主动磁回热器均匀填充时,三层回热器性能好于单层和双层;当双层回热器非均匀比例填充时,发现在填充比为3∶7时性能最佳。相对于5∶5填充的双层回热器,3∶7比例填充的回热器冷量提高了6.02%,对应的COP提高了3.5%;同时对比三层回热器(即算例c),最大冷量提高了1.13%。在考察不同高温端温度对3种回热器的性能影响时,不同高温端温度下不同的填充方式选择对回热器的性能影响较大。
中图分类号:
海鹏, 李振兴, 李珂, 黄红梅, 郑文帅, 高新强, 戴巍, 沈俊. 多层主动磁回热器的仿真优化[J]. 化工学报, 2021, 72(S1): 302-309.
HAI Peng, LI Zhenxing, LI Ke, HUANG Hongmei, ZHENG Wenshuai, GAO Xinqiang, DAI Wei, SHEN Jun. Simulation and optimization of multilayer active magnetic regenerator[J]. CIESC Journal, 2021, 72(S1): 302-309.
参数 | 数值 |
---|---|
磁场强度H / T | 0~1 |
回热器填充横截面积Ac / mm2 | 441 |
运行频率f / Hz | 0.5 |
利用系数U | 0 ~ 1.60 |
回热器填充长度l / mm | 100 |
Gd颗粒平均直径dp / mm | 0.70 |
孔隙率ε | 0.39 |
换热流体 | 水 |
表1 磁制冷系统的结构以及运行参数
Table 1 Structure and operation parameters of magnetic refrigeration system
参数 | 数值 |
---|---|
磁场强度H / T | 0~1 |
回热器填充横截面积Ac / mm2 | 441 |
运行频率f / Hz | 0.5 |
利用系数U | 0 ~ 1.60 |
回热器填充长度l / mm | 100 |
Gd颗粒平均直径dp / mm | 0.70 |
孔隙率ε | 0.39 |
换热流体 | 水 |
工质 | 居里温度 / K | 绝热温变/K |
---|---|---|
Gd | 293(~ 20℃) | 3.57 |
Gd94Er6 | 283(~ 10℃) | 3.55 |
Gd89Er11 | 273(~ 0℃) | 3.32 |
表2 Gd、Gd94Er6以及Gd89Er11的磁热效应与温度的关系
Table 2 Relationship between magnetothermal effect and temperature of Gd, Gd94Er6 and Gd89Er11
工质 | 居里温度 / K | 绝热温变/K |
---|---|---|
Gd | 293(~ 20℃) | 3.57 |
Gd94Er6 | 283(~ 10℃) | 3.55 |
Gd89Er11 | 273(~ 0℃) | 3.32 |
算例 | 层数 | 填充工质 | 各层质量比 | 利用系数 |
---|---|---|---|---|
a1 | 1 | Gd | 0.4~1.4 | |
a2 | 1 | Gd94Er6 | 0.4~1.4 | |
a3 | 1 | Gd89Er11 | 0.4~1.4 | |
b1 | 2 | Gd,Gd94Er6 | 1∶1 | 0.4~1.4 |
b2 | 2 | Gd94Er6,Gd89Er11 | 1∶1 | 0.4~1.4 |
b3 | 2 | Gd,Gd89Er11 | 1∶1 | 0.4~1.4 |
c | 3 | Gd,Gd94Er6,Gd89Er11 | 1∶1∶1 | 0.4~1.4 |
表3 数值模型算例参数
Table 3 Parameters of numerical model
算例 | 层数 | 填充工质 | 各层质量比 | 利用系数 |
---|---|---|---|---|
a1 | 1 | Gd | 0.4~1.4 | |
a2 | 1 | Gd94Er6 | 0.4~1.4 | |
a3 | 1 | Gd89Er11 | 0.4~1.4 | |
b1 | 2 | Gd,Gd94Er6 | 1∶1 | 0.4~1.4 |
b2 | 2 | Gd94Er6,Gd89Er11 | 1∶1 | 0.4~1.4 |
b3 | 2 | Gd,Gd89Er11 | 1∶1 | 0.4~1.4 |
c | 3 | Gd,Gd94Er6,Gd89Er11 | 1∶1∶1 | 0.4~1.4 |
磁热工质种类 | 层数 | 填充比 | 高温端温度 |
---|---|---|---|
Gd,Gd94Er6 | 2 | 5∶5 | 289.15~299.15 K |
Gd,Gd94Er6 | 2 | 3∶7 | 289.15~299.15 K |
Gd,Gd94Er6,Gd89Er11 | 3 | 1∶1∶1 | 289.15~299.15 K |
表4 三组回热器的组成以及运行参数
Table 4 Composition and operation parameters of three sets of regenerator
磁热工质种类 | 层数 | 填充比 | 高温端温度 |
---|---|---|---|
Gd,Gd94Er6 | 2 | 5∶5 | 289.15~299.15 K |
Gd,Gd94Er6 | 2 | 3∶7 | 289.15~299.15 K |
Gd,Gd94Er6,Gd89Er11 | 3 | 1∶1∶1 | 289.15~299.15 K |
1 | Brown J S, Domanski P A. Review of alternative cooling technologies [J]. Applied Thermal Engineering, 2014, 64(1/2): 252-262. |
2 | Sari O, Balli M. From conventional to magnetic refrigerator technology [J]. International Journal of Refrigeration, 2014, 37: 8-15. |
3 | Qian S X, Ling J Z, Muehlbauer J, et al. Study on high efficient heat recovery cycle for solid-state cooling [J]. International Journal of Refrigeration, 2015, 55: 102-119. |
4 | Kitanovski A, Tušek J, Tomc U, et al. Magnetocaloric Energy Conversion [M]. Cham: Springer International Publishing, 2015. |
5 | Aprea C, Greco A, Maiorino A, et al. Magnetic refrigeration: an eco-friendly technology for the refrigeration at room temperature [J]. Journal of Physics: Conference Series, 2015, 655: 012026. |
6 | Yu B F, Liu M, Egolf P W, et al. A review of magnetic refrigerator and heat pump prototypes built before the year 2010 [J]. International Journal of Refrigeration, 2010, 33(6): 1029-1060. |
7 | Brown G V. Magnetic heat pumping near room temperature [J]. Journal of Applied Physics, 1976, 47(8): 3673-3680. |
8 | Barclay J A, Steyert W A. Active magnetic regenerator: US 4332135 [P]. 1982-06-01. |
9 | Pecharsky V K, Gschneidner K A. Giant magnetocaloric effect inGd5(Si2Ge2) [J]. Physical Review Letters, 1997, 78(23): 4494. |
10 | Hu F X, Shen B G, Sun J R, et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 [J]. Applied Physics Letters, 2001, 78(23): 3675-3677. |
11 | Trevizoli P V, Barbosa J R, Ferreira R T S. Experimental evaluation of a Gd-based linear reciprocating active magnetic regenerator test apparatus [J]. International Journal of Refrigeration, 2011, 34(6): 1518-1526. |
12 | Tušek J, Kitanovski A, Zupan S M, et al. A comprehensive experimental analysis of gadolinium active magnetic regenerators [J]. Applied Thermal Engineering, 2013, 53(1): 57-66. |
13 | Tura A, Rowe A. Permanent magnet magnetic refrigerator design and experimental characterization [J]. International Journal of Refrigeration, 2011, 34(3): 628-639. |
14 | Arnold D S, Tura A, Ruebsaat-Trott A, et al. Design improvements of a permanent magnet active magnetic refrigerator [J]. International Journal of Refrigeration, 2014, 37: 99-105. |
15 | Aprea C, Greco A, Maiorino A, et al. Initial experimental results from a rotary permanent magnet magnetic refrigerator [J]. International Journal of Refrigeration, 2014, 43: 111-122. |
16 | Eriksen D, Engelbrecht K, Bahl C R H, et al. Design and experimental tests of a rotary active magnetic regenerator prototype [J]. International Journal of Refrigeration, 2015, 58: 14-21. |
17 | Aprea C, Greco A, Maiorino A, et al. The energy performances of a rotary permanent magnet magnetic refrigerator [J]. International Journal of Refrigeration, 2016, 61: 1-11. |
18 | Jacobs S, Auringer J, Boeder A, et al. The performance of a large-scale rotary magnetic refrigerator [J]. International Journal of Refrigeration, 2014, 37: 84-91. |
19 | Oliveira P A, Trevizoli P V, Barbosa J R, et al. A 2D hybrid model of the fluid flow and heat transfer in a reciprocating active magnetic regenerator [J]. International Journal of Refrigeration, 2012, 35(1): 98-114. |
20 | Aprea C, Cardillo G, Greco A, et al. A comparison between experimental and 2D numerical results of a packed-bed active magnetic regenerator [J]. Applied Thermal Engineering, 2015, 90: 376-383. |
21 | Kamran M S, Sun J, Tang Y B, et al. Numerical investigation of room temperature magnetic refrigerator using microchannel regenerators [J]. Applied Thermal Engineering, 2016, 102: 1126-1140. |
22 | Bouchard J, Nesreddine H, Galanis N. Model of a porous regenerator used for magnetic refrigeration at room temperature [J]. International Journal of Heat and Mass Transfer, 2009, 52(5/6): 1223-1229. |
23 | Plaznik U, Tušek J, Kitanovski A, et al. Numerical and experimental analyses of different magnetic thermodynamic cycles with an active magnetic regenerator [J]. Applied Thermal Engineering, 2013, 59(1/2): 52-59. |
24 | Lozano J A, Engelbrecht K, Bahl C R H, et al. Performance analysis of a rotary active magnetic refrigerator [J]. Applied Energy, 2013, 111: 669-680. |
25 | Engelbrecht K, Tušek J, Nielsen K K, et al. Improved modelling of a parallel plate active magnetic regenerator [J]. Journal of Physics D: Applied Physics, 2013, 46(25): 255002. |
26 | Richard M A, Rowe A M, Chahine R. Magnetic refrigeration: Single and multimaterial active magnetic regenerator experiments [J]. Journal of Applied Physics, 2004, 95(4): 2146-2150. |
27 | Bahl C R H, Navickaitė K, Neves Bez H, et al. Operational test of bonded magnetocaloric plates [J]. International Journal of Refrigeration, 2017, 76: 245-251. |
28 | Govindappa P, Trevizoli P V, Campbell O, et al. Experimental investigation of MnFeP1-xAsx multilayer active magnetic regenerators [J]. Journal of Physics D: Applied Physics, 2017, 50(31): 315001. |
29 | Lei T, Navickaitė K, Engelbrecht K, et al. Passive characterization and active testing of epoxy bonded regenerators for room temperature magnetic refrigeration [J]. Applied Thermal Engineering, 2018, 128: 10-19. |
30 | Tušek J, Kitanovski A, Tomc U, et al. Experimental comparison of multi-layered La-Fe-Co-Si and single-layered Gd active magnetic regenerators for use in a room-temperature magnetic refrigerator [J]. International Journal of Refrigeration, 2014, 37: 117-126. |
31 | Teyber R, Trevizoli P V, Christiaanse T V, et al. Performance evaluation of two-layer active magnetic regenerators with second-order magnetocaloric materials [J]. Applied Thermal Engineering, 2016, 106: 405-414. |
32 | Kamran M S, Ali H, Farhan M, et al. Performance optimisation of room temperature magnetic refrigerator with layered/multi-material microchannel regenerators [J]. International Journal of Refrigeration, 2016, 68: 94-106. |
33 | Lei T, Engelbrecht K, Nielsen K K, et al. Study of multi-layer active magnetic regenerators using magnetocaloric materials with first and second order phase transition [J]. Journal of Physics D: Applied Physics, 2016, 49(34): 345001. |
34 | 李振兴, 李珂, 沈俊, 等. 小型室温磁制冷系统的改进及试验研究[J]. 工程热物理学报, 2020, 41(3): 521-525. |
Li Z X, Li K, Shen J, et al. Experimental researches on the performance of a rotary-type magnetic refrigerator with modified double-halbach permanent magnet arrays [J]. Journal of Engineering Thermophysics, 2020, 41(3): 521-525. |
[1] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[2] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[3] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[4] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[5] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[6] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[7] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[8] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[9] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[10] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[11] | 韩晨, 司徒友珉, 朱斌, 许建良, 郭晓镭, 刘海峰. 协同处理废液的多喷嘴粉煤气化炉内反应流动研究[J]. 化工学报, 2023, 74(8): 3266-3278. |
[12] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[13] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[14] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[15] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||