化工学报 ›› 2021, Vol. 72 ›› Issue (6): 3338-3348.DOI: 10.11949/0438-1157.20201599
陈浩1,2(),刘希良1,2,谭先红3,田虓丰3,杨胜来1,杨冉2,张超2
收稿日期:
2020-11-03
修回日期:
2021-03-24
出版日期:
2021-06-05
发布日期:
2021-06-05
通讯作者:
陈浩
作者简介:
陈浩(1985—),男,博士,副教授,基金资助:
CHEN Hao1,2(),LIU Xiliang1,2,TAN Xianhong3,TIAN Xiaofeng3,YANG Shenglai1,YANG Ran2,ZHANG Chao2
Received:
2020-11-03
Revised:
2021-03-24
Online:
2021-06-05
Published:
2021-06-05
Contact:
CHEN Hao
摘要:
针对轻、重质油油藏注空气开发机理,选取典型轻、重质油样进行热重实验,采用改进的Ozawa-Flynn-Wall等转化率法对比分析了不同性质原油三种氧化阶段的热行为和动力学特征,同时探讨了表面积效应对轻、重质原油氧化反应的影响。研究表明:①各氧化阶段之间存在过渡区域,转化率的准确选取对动力学参数至关重要。②轻、重质原油不同氧化阶段的氧化特征存在明显差异,轻质油以低温氧化为主,燃料沉积和高温氧化不显著,且低温氧化、燃料沉积、高温氧化阶段的起始温度更低,更易诱发氧化反应;重质油燃料沉积和高温氧化显著,氧化反应速度更快。③表面积效应导致轻质油低温氧化活化能降低15%以上,峰值温度降低7~17℃。重质油燃料沉积和高温氧化显著增强,燃尽温度下降10~17℃。
中图分类号:
陈浩, 刘希良, 谭先红, 田虓丰, 杨胜来, 杨冉, 张超. 表面积效应对不同性质原油热力学行为影响研究[J]. 化工学报, 2021, 72(6): 3338-3348.
CHEN Hao, LIU Xiliang, TAN Xianhong, TIAN Xiaofeng, YANG Shenglai, YANG Ran, ZHANG Chao. Study on the effect of surface area on the thermal behavior of crude oils with different properties[J]. CIESC Journal, 2021, 72(6): 3338-3348.
类型 | 密度/ (g/cm3) | 黏度/ (mPa·s) | 饱和烃/% | 芳香烃/% | 胶质/% | 沥青质/% |
---|---|---|---|---|---|---|
轻质油 | 0.828 | 4.73 | 72.81 | 14.23 | 9.86 | 3.1 |
重质油 | 0.931 | 2675 | 39.19 | 23.27 | 26.43 | 11.11 |
表1 原油样品参数(20℃)
Table 1 Parameters of crude oil sample (20℃)
类型 | 密度/ (g/cm3) | 黏度/ (mPa·s) | 饱和烃/% | 芳香烃/% | 胶质/% | 沥青质/% |
---|---|---|---|---|---|---|
轻质油 | 0.828 | 4.73 | 72.81 | 14.23 | 9.86 | 3.1 |
重质油 | 0.931 | 2675 | 39.19 | 23.27 | 26.43 | 11.11 |
转化率α | 斜率 | 活化能E/ (kJ·mol-1) | 相关系数R2 |
---|---|---|---|
0.1 | -4122.4 | 32.58 | 0.959 |
0.2 | -4678.9 | 36.98 | 0.962 |
0.3 | -5145.4 | 40.66 | 0.961 |
0.4 | -5575.2 | 44.06 | 0.969 |
0.5 | -6192.5 | 48.94 | 0.978 |
0.6 | -6911.9 | 54.63 | 0.985 |
0.7 | -7853.7 | 62.07 | 0.989 |
0.8 | -9493.2 | 75.03 | 0.991 |
0.9 | -11672.1 | 92.24 | 0.998 |
1.0 | -19857.0 | 156.93 | 0.986 |
表2 纯轻质油低温氧化的活化能与相关参数
Table 2 Activation energy of LTO of pure light oil and relevant parameters
转化率α | 斜率 | 活化能E/ (kJ·mol-1) | 相关系数R2 |
---|---|---|---|
0.1 | -4122.4 | 32.58 | 0.959 |
0.2 | -4678.9 | 36.98 | 0.962 |
0.3 | -5145.4 | 40.66 | 0.961 |
0.4 | -5575.2 | 44.06 | 0.969 |
0.5 | -6192.5 | 48.94 | 0.978 |
0.6 | -6911.9 | 54.63 | 0.985 |
0.7 | -7853.7 | 62.07 | 0.989 |
0.8 | -9493.2 | 75.03 | 0.991 |
0.9 | -11672.1 | 92.24 | 0.998 |
1.0 | -19857.0 | 156.93 | 0.986 |
原油 类型 | 升温速率/ (℃/min) | LTO | FD | HTO | 燃尽温度/℃ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | |||
轻质油 | 5 | 25~387 | 260 | 86.9 | 387~481 | 458 | 5.8 | 481~574 | 526 | 7.2 | 574 |
10 | 25~402 | 298 | 85 | 402~505 | 475 | 7.6 | 505~616 | 544 | 7.4 | 616 | |
15 | 25~413 | 310 | 85.6 | 413~517 | 488 | 6.8 | 517~633 | 562 | 7.6 | 633 | |
20 | 25~434 | 331 | 86.1 | 434~535 | 498 | 7 | 535~653 | 580 | 6.6 | 653 | |
表面积效应+ 轻质油 | 5 | 25~416 | 253 | 88.3 | 416~474 | 468 | 4.1 | 474~562 | 496 | 7.6 | 562 |
10 | 25~429 | 293 | 88 | 429~495 | 489 | 5.6 | 495~605 | 531 | 5.9 | 605 | |
15 | 25~440 | 304 | 87.1 | 440~510 | 482 | 4.9 | 510~610 | 549 | 8.0 | 610 | |
20 | 25~450 | 314 | 87.5 | 450~516 | 517 | 4.3 | 517~632 | 563 | 8.1 | 632 |
表3 考虑表面积效应前后轻质油氧化特征对比
Table 3 Comparison of oxidation characteristics of light oil before and after considering surface area effect
原油 类型 | 升温速率/ (℃/min) | LTO | FD | HTO | 燃尽温度/℃ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | |||
轻质油 | 5 | 25~387 | 260 | 86.9 | 387~481 | 458 | 5.8 | 481~574 | 526 | 7.2 | 574 |
10 | 25~402 | 298 | 85 | 402~505 | 475 | 7.6 | 505~616 | 544 | 7.4 | 616 | |
15 | 25~413 | 310 | 85.6 | 413~517 | 488 | 6.8 | 517~633 | 562 | 7.6 | 633 | |
20 | 25~434 | 331 | 86.1 | 434~535 | 498 | 7 | 535~653 | 580 | 6.6 | 653 | |
表面积效应+ 轻质油 | 5 | 25~416 | 253 | 88.3 | 416~474 | 468 | 4.1 | 474~562 | 496 | 7.6 | 562 |
10 | 25~429 | 293 | 88 | 429~495 | 489 | 5.6 | 495~605 | 531 | 5.9 | 605 | |
15 | 25~440 | 304 | 87.1 | 440~510 | 482 | 4.9 | 510~610 | 549 | 8.0 | 610 | |
20 | 25~450 | 314 | 87.5 | 450~516 | 517 | 4.3 | 517~632 | 563 | 8.1 | 632 |
原油 类型 | 升温速率/ (℃/min) | LTO | FD | HTO | 燃尽温度/℃ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | |||
重质油 | 5 | 25~374 | 328 | 49.2 | 374~466 | 440 | 21.0 | 466~549 | 509 | 29.1 | 549 |
10 | 25~393 | 348 | 48.9 | 393~487 | 453 | 22.8 | 487~590 | 532 | 27.2 | 590 | |
15 | 25~400 | 358 | 48.1 | 400~502 | 475 | 26.8 | 502~611 | 551 | 25.1 | 611 | |
20 | 25~408 | 369 | 47.3 | 408~521 | 492 | 28.5 | 521~633 | 574 | 23.9 | 633 | |
表面积效应+ 重质油 | 5 | 25~357 | 317 | 48.3 | 357~479 | 432 | 23.9 | 479~535 | 495 | 26.6 | 535 |
10 | 25~375 | 331 | 47.4 | 375~495 | 443 | 25.1 | 495~573 | 509 | 24.3 | 573 | |
15 | 25~402 | 343 | 46.6 | 402~511 | 471 | 28.9 | 511~601 | 517 | 23.8 | 601 | |
20 | 25~405 | 354 | 46.1 | 405~514 | 490 | 30.3 | 514~619 | 538 | 22.5 | 619 |
表4 考虑表面积效应前后重质油氧化特征对比
Table 4 Comparison of oxidation characteristics of heavy oil before and after considering surface area effect
原油 类型 | 升温速率/ (℃/min) | LTO | FD | HTO | 燃尽温度/℃ | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | 区间/℃ | 峰值/℃ | 质量损失/% | |||
重质油 | 5 | 25~374 | 328 | 49.2 | 374~466 | 440 | 21.0 | 466~549 | 509 | 29.1 | 549 |
10 | 25~393 | 348 | 48.9 | 393~487 | 453 | 22.8 | 487~590 | 532 | 27.2 | 590 | |
15 | 25~400 | 358 | 48.1 | 400~502 | 475 | 26.8 | 502~611 | 551 | 25.1 | 611 | |
20 | 25~408 | 369 | 47.3 | 408~521 | 492 | 28.5 | 521~633 | 574 | 23.9 | 633 | |
表面积效应+ 重质油 | 5 | 25~357 | 317 | 48.3 | 357~479 | 432 | 23.9 | 479~535 | 495 | 26.6 | 535 |
10 | 25~375 | 331 | 47.4 | 375~495 | 443 | 25.1 | 495~573 | 509 | 24.3 | 573 | |
15 | 25~402 | 343 | 46.6 | 402~511 | 471 | 28.9 | 511~601 | 517 | 23.8 | 601 | |
20 | 25~405 | 354 | 46.1 | 405~514 | 490 | 30.3 | 514~619 | 538 | 22.5 | 619 |
14 | 廖广志, 杨怀军, 蒋有伟, 等. 减氧空气驱适用范围及氧含量界限[J]. 石油勘探与开发, 2018, 45(1): 105-110. |
Liao G Z, Yang H J, Jiang Y W, et al. Applicable scope of oxygen-reduced air flooding and the limit of oxygen content[J]. Petroleum Exploration and Development, 2018, 45(1): 105-110. | |
15 | 侯胜明, 刘印华, 于洪敏, 等. 注空气过程轻质原油低温氧化动力学[J]. 中国石油大学学报(自然科学版), 2011, 35(1): 169-173. |
Hou S M, Liu Y H, Yu H M, et al. Kinetics of low temperature oxidation of light oil in air injection process[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(1): 169-173. | |
16 | 中国石油天然气总公司. 稠油油藏流体物性分析方法 原油黏度测定: [S]. 北京: 石油工业出版社, 1998. |
China National Petroleum Corporation. Analytical approach of fluid physical property for heavy-oil reservoirs: Crude oil viscosity measurements: [S]. Beijing: Petroleum Industry Press, 1998. | |
17 | Saraji S, Kharrat R, Razzaghi S, et al. Kinetic study of crude oil combustion in the presence of carbonate rock[C]//SPE Middle East Oil and Gas Show and Conference, SPE-105112-MS. Manama, Bahrain, 2007. |
18 | Pu W F, Chen Y F, Li Y B, et al. Comparison of different kinetic models for heavy oil oxidation characteristic evaluation[J]. Energy & Fuels, 2017, 31(11): 12665-12676. |
19 | Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data[J]. Thermochimica Acta, 2011, 520(1/2): 1-19. |
20 | 唐君实, 关文龙, 梁金中, 等. 热重分析仪求取稠油高温氧化动力学参数[J]. 石油学报, 2013, 34(4): 775-779. |
Tang J S, Guan W L, Liang J Z, et al. Determination on high-temperature oxidation kinetic parameters of heavy oils with thermogravimetric analyzer[J]. Acta Petrolei Sinica, 2013, 34(4): 775-779. | |
21 | Mothé C G, Miranda I C. Study of kinetic parameters of thermal decomposition of bagasse and sugarcane straw using Friedman and Ozawa-Flynn-Wall isoconversional methods[J]. Journal of Thermal Analysis and Calorimetry, 2013, 113(2): 497-505. |
1 | 张方礼, 赵庆辉, 闫红星, 等. 指纹分析技术在火驱燃烧状态识别中的应用[J]. 特种油气藏, 2015, 22(6): 80-84,144-145. |
Zhang F L, Zhao Q H, Yan H X, et al. Application of signature analysis technique in identification of fire flood combustion state[J]. Special Oil &Gas Reservoirs, 2015, 22(6): 80-84,144-145. | |
2 | 田红. 石油焦与油页岩混合燃烧特性及其燃烧动力学[J]. 石油学报(石油加工), 2010, 26(2): 225-230. |
Tian H. Co-combustion characteristics and kinetics of petroleum coke and oil shale[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2010, 26(2): 225-230. | |
3 | 蒋有伟, 张义堂, 刘尚奇, 等. 低渗透油藏注空气开发驱油机理[J]. 石油勘探与开发, 2010, 37(4): 471-476. |
Jiang Y W, Zhang Y T, Liu S Q, et al. Displacement mechanisms of air injection in low permeability reservoirs[J]. Petroleum Exploration and Development, 2010, 37(4): 471-476. | |
4 | 张斌, 于聪, 崔景伟, 等. 生烃动力学模拟在页岩油原位转化中的应用[J]. 石油勘探与开发, 2019, 46(6): 1212-1219. |
Zhang B, Yu C, Cui J W, et al. Kinetic simulation of hydrocarbon generation and its application to in situ conversion of shale oil[J]. Petroleum Exploration and Development, 2019, 46(6): 1212-1219. | |
5 | 江航, 许强辉, 马德胜, 等. 注空气开采过程中稠油结焦量影响因素[J]. 石油学报, 2016, 37(8): 1030-1036. |
Jiang H, Xu Q H, Ma D S, et al. Influence factors of coking amount during recovery of heavy oil by air injection[J]. Acta Petrolei Sinica, 2016, 37(8): 1030-1036. | |
6 | Li Y B, Chen Y F, Pu W F, et al. Low temperature oxidation characteristics analysis of ultra-heavy oil by thermal methods[J]. Journal of Industrial and Engineering Chemistry, 2017, 48: 249-258. |
7 | Yuan C D, Pu W F, Jin F Y, et al. Characterizing the fuel deposition process of crude oil oxidation in air injection[J]. Energy & Fuels, 2015, 29(11): 7622-7629. |
8 | Kok M V, Gul K G. Thermal characteristics and kinetics of crude oils and SARA fractions[J]. Thermochimica Acta, 2013, 569: 66-70. |
9 | Zhao R B, Wei Y G, Wang Z M, et al. Kinetics of low-temperature oxidation of light crude oil[J]. Energy & Fuels, 2016, 30(4): 2647-2654. |
10 | Zheng R N, Pan J J, Cai G, et al. Effects of clay minerals on the low-temperature oxidation of heavy oil[J]. Fuel, 2019, 254: 115597. |
11 | Varfolomeev M A, Nurgaliev D K, Kok M V. Calorimetric study approach for crude oil combustion in the presence of clay as catalyst[J]. Petroleum Science and Technology, 2016, 34(19): 1624-1630. |
12 | Yu X C, Qu Z, Kan C B, et al. Effect of different clay minerals on heavy oil oxidation during ignition process[J]. Energy & Fuels, 2017, 31(11): 12839-12847. |
13 | Kok M V, Gundogar A S. Effect of different clay concentrations on crude oil combustion kinetics by thermogravimetry[J]. Journal of Thermal Analysis and Calorimetry, 2010, 99(3): 779-783. |
22 | Karger-Kocsis J. Thermal analysis of polymers: fundamentals and applications[J]. Macromolecular Chemistry and Physics, 2009, 210(19): 1661. |
23 | Khansari Z, Kapadia P, Mahinpey N, et al. A new reaction model for low temperature oxidation of heavy oil: experiments and numerical modeling[J]. Energy, 2014, 64: 419-428. |
24 | Zhao R B, Wei Y G, Wang Z M, et al. Kinetics of low-temperature oxidation of light crude oil[J]. Energy & Fuels, 2016, 30(4): 2647-2654. |
25 | 王正茂, 廖广志, 蒲万芬, 等. 注空气开发中地层原油氧化反应特征[J]. 石油学报, 2018, 39(3): 314-319. |
Wang Z M, Liao G Z, Pu W F, et al. Oxidation reaction features of formation crude oil in air injection development[J]. Acta Petrolei Sinica, 2018, 39(3): 314-319. | |
26 | Ren S R, Greaves M, Rathbone R R. Air injection LTO process: an IOR technique for light-oil reservoirs[J]. SPE Journal, 2002, 7(1): 90-99. |
27 | 王玉婷, 邓君宇, 刘延民, 等. 轻质油藏注空气过程中原油低温氧化反应的O2-CO2转换率[J]. 科学技术与工程, 2014, 14(26): 50-54, 71. |
Wang Y T, Deng J Y, Liu Y M, et al. Oxygen-carbon dioxide conversion ratio in air-light oil low temperature oxidation process[J]. Science Technology and Engineering, 2014, 14(26): 50-54, 71. | |
28 | Turta A T, Chattopadhyay S K, Bhattacharya R N, et al. Current status of commercial in situ combustion projects worldwide[J]. Journal of Canadian Petroleum Technology, 2007, 46(11): 7-11. |
29 | 梁金中, 王伯军, 关文龙, 等. 稠油油藏火烧油层吞吐技术与矿场试验[J]. 石油学报, 2017, 38(3): 324-332. |
Liang J Z, Wang B J, Guan W L, et al. Technology and field test of cyclic in situ combustion in heavy oil reservoir[J]. Acta Petrolei Sinica, 2017, 38(3): 324-332. | |
30 | Shah A, Fishwick R, Wood J, et al. A review of novel techniques for heavy oil and bitumen extraction and upgrading[J]. Energy & Environmental Science, 2010, 3(6): 700. |
31 | Kok M V, Keskin C. Comparative combustion kinetics for in situ combustion process[J]. Thermochimica Acta, 2001, 369(1/2): 143-147. |
32 | 袁士宝, 宁奎, 蒋海岩, 等. 火驱燃烧状态判定试验[J]. 中国石油大学学报(自然科学版), 2012, 36(5): 114-118. |
Yuan S B, Ning K, Jiang H Y, et al. Experiments of judging combustion state of in situ combustion[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(5): 114-118. | |
33 | Chen H, Liu X L, Jia N H, et al. The impact of the oil character and quartz sands on the thermal behavior and kinetics of crude oil[J]. Energy, 2020, 210: 118573. |
[1] | 毕丽森, 刘斌, 胡恒祥, 曾涛, 李卓睿, 宋健飞, 吴翰铭. 粗糙界面上纳米液滴蒸发模式的分子动力学研究[J]. 化工学报, 2023, 74(S1): 172-178. |
[2] | 于宏鑫, 邵双全. 水结晶过程的分子动力学模拟分析[J]. 化工学报, 2023, 74(S1): 250-258. |
[3] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[4] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[5] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[6] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[7] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[8] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[9] | 范孝雄, 郝丽芳, 范垂钢, 李松庚. LaMnO3/生物炭催化剂低温NH3-SCR催化脱硝性能研究[J]. 化工学报, 2023, 74(9): 3821-3830. |
[10] | 郑佳丽, 李志会, 赵新强, 王延吉. 离子液体催化合成2-氰基呋喃反应动力学研究[J]. 化工学报, 2023, 74(9): 3708-3715. |
[11] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[12] | 杨越, 张丹, 郑巨淦, 涂茂萍, 杨庆忠. NaCl水溶液喷射闪蒸-掺混蒸发的实验研究[J]. 化工学报, 2023, 74(8): 3279-3291. |
[13] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[14] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[15] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||