化工学报 ›› 2021, Vol. 72 ›› Issue (2): 633-652.DOI: 10.11949/0438-1157.20201860
收稿日期:
2020-12-17
修回日期:
2021-01-14
出版日期:
2021-02-05
发布日期:
2021-02-05
通讯作者:
赵双良
作者简介:
唐伟强(1991—),男,博士,讲师,基金资助:
TANG Weiqiang1(),XIE Peng2,XU Xiaofei1,ZHAO Shuangliang1,2()
Received:
2020-12-17
Revised:
2021-01-14
Online:
2021-02-05
Published:
2021-02-05
Contact:
ZHAO Shuangliang
摘要:
提高化学反应的选择性和转化率是发展绿色化学的重要内容。大部分化学反应都在溶液中发生,溶剂对于反应速率、平衡过程甚至反应机理都有重要的影响。溶剂效应对化学反应影响的理论研究比较缺乏。综述了近年来发展的理论模型及最近本课题组提出的反应密度泛函理论,分别介绍了反应密度泛函理论在水相、有机相、界面体系和限域体系中的应用,分析了不同反应溶剂结构对化学反应自由能分布的影响,总结了溶剂效应的影响机制,最后展望了自洽反应密度泛函理论的构建、反应-扩散耦合研究、聚合物反应密度泛函理论及反应密度泛函理论在反应溶剂筛选、界面反应和电解液设计中的应用。
中图分类号:
唐伟强, 谢鹏, 徐小飞, 赵双良. 反应密度泛函理论的构建与初步应用[J]. 化工学报, 2021, 72(2): 633-652.
TANG Weiqiang, XIE Peng, XU Xiaofei, ZHAO Shuangliang. Development and applications of reaction density functional theory[J]. CIESC Journal, 2021, 72(2): 633-652.
1 | 何良年. 绿色化学基本原理[M]. 北京: 科学出版社, 2018. |
He L N. Fundamentals of Green Chemistry[M]. Beijing: Science Press, 2018. | |
2 | Liu H, Jiang T, Han B, et al. Selective phenol hydrogenation to cyclohexanone over a dual supported Pd-Lewis acid catalyst[J]. Science, 2009, 326(5957): 1250-1252. |
3 | Kong D Y, Moon P J, Lui E K J, et al. Direct reversible decarboxylation from stable organic acids in dimethylformamide solution[J]. Science, 2020, 369(6503): 557-561. |
4 | Wang W R, Rao H S, Fang W J, et al. Enhancing loading amount and performance of quantum-dot-sensitized solar cells based on direct adsorption of quantum dots from bicomponent solvents[J]. The Journal of Physical Chemistry Letters, 2019, 10(2): 229-237. |
5 | Chew A K, Walker T W, Shen Z Z, et al. Effect of mixed-solvent environments on the selectivity of acid-catalyzed dehydration reactions[J]. ACS Catalysis, 2020, 10(3): 1679-1691. |
6 | Hirata F. Molecular Theory of Solvation[M]. Dordrecht: Kluwer Academic Publishers, 2004. |
7 | Mennucci B, Cammi R. Continuum Solvation Models in Chemical Physics[M]. Chichester, UK:John Wiley & Sons, Ltd, 2007. |
8 | Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models[J]. Chemical Reviews, 2005, 105(8): 2999-3094. |
9 | Reichardt C, Welton T. Solvents and Solvent Effects in Organic Chemistry[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. |
10 | Carey F A. Organic Chemistry[M]. The McGraw-Hill Companies, 2004. |
11 | Ahn Y H, Moon S, Koh D Y, et al. One-step formation of hydrogen clusters in clathrate hydrates stabilized via natural gas blending[J]. Energy Storage Materials, 2020, 24: 655-661. |
12 | Hong S J, Moon S, Lee Y, et al. Investigation of thermodynamic and kinetic effects of cyclopentane derivatives on CO2 hydrates for potential application to seawater desalination[J]. Chemical Engineering Journal, 2019, 363: 99-106. |
13 | Kyung D, Lee W. Structure, stability, and storage capacity of CO2+N2O mixed hydrates for the storage of CO2+N2O mixture gas[J]. International Journal of Greenhouse Gas Control, 2018, 76: 32-38. |
14 | Li K Y, Shi R L, Tang L L, et al. Cage fusion from bi-cages to tri-cages during nucleation of methane hydrate: a DFT-D simulation[J]. Physical Chemistry Chemical Physics, 2019, 21(18): 9150-9158. |
15 | Andanson J M, Baiker A. Exploring catalytic solid/liquid interfaces by in situ attenuated total reflection infrared spectroscopy[J]. Chemical Society Reviews, 2010, 39(12): 4571-4584. |
16 | Miertuš S, Tomasi J. Approximate evaluations of the electrostatic free energy and internal energy changes in solution processes[J]. Chemical Physics, 1982, 65(2): 239-245. |
17 | Miertuš S, Scrocco E, Tomasi J. Electrostatic interaction of a solute with a continuum. A direct utilizaion of ab initio molecular potentials for the prevision of solvent effects[J]. Chemical Physics, 1981, 55(1): 117-129. |
18 | Kuechler E R, York D M. Quantum mechanical study of solvent effects in a prototype SN2 reaction in solution: Cl-attack on CH3Cl[J]. J. Chem. Phys., 2014, 140(5): 054109. |
19 | Car R, Parrinello M. Unified approach for molecular dynamics and density-functional theory[J]. Physical Review Letters, 1985, 55(22): 2471-2474. |
20 | Vreven T, Frisch M J, Kudin K N, et al. Geometry optimization with QM/MM methods (II): Explicit quadratic coupling[J]. Molecular Physics, 2006, 104(5/6/7): 701-714. |
21 | Laino T, Mohamed F, Laio A, et al. An efficient real space multigrid QM/MM electrostatic coupling[J]. Journal of Chemical Theory and Computation, 2005, 1(6): 1176-1184. |
22 | Orozco M, Luque F J. Theoretical methods for the description of the solvent effect in biomolecular systems[J]. Chemical Reviews, 2000, 100(11): 4187-4226. |
23 | Muñoz J, Barril X, Luque F J, et al. Partitioning of free energies of solvation into fragment contributions: applications in drug design[M]//Fundamentals of Molecular Similarity. Springer, 2001: 143-168. |
24 | Vreven T, Morokuma K. On the application of the IMOMO (integrated molecular orbital + molecular orbital) method[J]. Journal of Computational Chemistry, 2000, 21(16): 1419-1432. |
25 | Mikkelsen K V, Jørgensen P, Jensen H J A. A multiconfiguration self-consistent reaction field response method[J]. The Journal of Chemical Physics, 1994, 100(9): 6597-6607. |
26 | Bishop D M. Aspects of non-linear-optical calculations[J]. Advances in Quantum Chemistry, 1994, 25: 1-45. |
27 | Shelton D P, Rice J E. Measurements and calculations of the hyperpolarizabilities of atoms and small molecules in the gas phase[J]. Chemical Reviews, 1994, 94(1): 3-29. |
28 | Galván I F, Sánchez M L, Martı́n M E, et al. ASEP/MD: a program for the calculation of solvent effects combining QM/MM methods and the mean field approximation[J]. Computer Physics Communications, 2003, 155(3): 244-259. |
29 | Sánchez M L, Martín M E, Aguilar M A, et al. Solvent effects by means of averaged solvent electrostatic potentials: coupled method[J]. Journal of Computational Chemistry, 2000, 21(9): 705-715. |
30 | Hansen J P, McDonald I R. Theory of Simple Liquids[M]. Amsterdam: Elsevier, 1986. |
31 | Hirata F, Sato H, Ten-no S, et al. The RISM-SCF/MCSCF approach for chemical processes in solutions[M]//Computational Biochemistry and Biophysics. CRC Press, 2001. |
32 | Chandler D, Andersen H C. Optimized cluster expansions for classical fluids (Ⅱ): Theory of molecular liquids[J]. The Journal of Chemical Physics, 1972, 57(5): 1930-1937. |
33 | Hirata F, Pettitt B M, Rossky P J. Application of an extended RISM equation to dipolar and quadrupolar fluids[J]. The Journal of Chemical Physics, 1982, 77(1): 509-520. |
34 | Hirata F, Rossky P J. An extended RISM equation for molecular polar fluids[J]. Chemical Physics Letters, 1981, 83(2): 329-334. |
35 | Hirata F, Rossky P J, Pettitt B M. The interionic potential of mean force in a molecular polar solvent from an extended RISM equation[J]. The Journal of Chemical Physics, 1983, 78(6): 4133-4144. |
36 | Andersen H C, Chandler D, Weeks J D. Optimized cluster expansions for classical fluids (Ⅲ): Applications to ionic solutions and simple liquids[J]. The Journal of Chemical Physics, 1972, 57(7): 2626-2631. |
37 | Hudson S, Andersen H C. Optimized cluster expansions for classical fluids (Ⅳ): Primitive model electrolyte solutions[J]. The Journal of Chemical Physics, 1974, 60(5): 2188. |
38 | Ten-no S, Hirata F, Kato S. A hybrid approach for the solvent effect on the electronic structure of a solute based on the RISM and Hartree-Fock equations[J]. Chemical Physics Letters, 1993, 214(3/4): 391-396. |
39 | Ten-no S, Hirata F, Kato S. Reference interaction site model self-consistent field study for solvation effect on carbonyl compounds in aqueous solution[J]. The Journal of Chemical Physics, 1994, 100(10): 7443-7453. |
40 | Sato H, Hirata F. Theoretical study for autoionization of liquid water: temperature dependence of the ionic product (pKw)[J]. The Journal of Physical Chemistry A, 1998, 102(15): 2603-2608. |
41 | Ishida T, Hirata F, Sato H, et al. Molecular theory of solvent effect on Keto-Enol tautomers of formamide in aprotic solvents: RISM-SCF approach[J]. The Journal of Physical Chemistry B, 1998, 102(11): 2045-2050. |
42 | Wesolowski T A, Weber J. Kohn-Sham equations with constrained electron density: an iterative evaluation of the ground-state electron density of interacting molecules[J]. Chemical Physics Letters, 1996, 248(1/2): 71-76. |
43 | Zhao S L, Liu Y, Chen X Q, et al. Unified framework of multiscale density functional theories and its recent applications[J]. Advances in Chemical Engineering, 2015, 47: 1-83. |
44 | Wu J Z. Density functional theory for liquid structure and thermodynamics[M]//Molecular Thermodynamics of Complex Systems. Berlin Heidelberg: Springer, 2008. |
45 | Liu Y, Zhao S L, Wu J Z. A site density functional theory for water: application to solvation of amino acid side chains[J]. Journal of Chemical Theory and Computation, 2013, 9(4): 1896-1908. |
46 | Lian C, Cai C, Shen X J, et al. Improved oxidation of hydrogen off-gas by hydrophobic surface modification: a multiscale density functional theory study[J]. Particuology, 2019, 44: 28-35. |
47 | Wu J Z. Classical density functional theory for molecular systems[M]//Variational Methods in Molecular Modeling. Singapore: Springer, 2017. |
48 | Wu J Z. Density functional theory for chemical engineering: from capillarity to soft materials[J]. AIChE Journal, 2006, 52(3): 1169-1193. |
49 | Wu J Z, Li Z D. Density-functional theory for complex fluids[J]. Annual Review of Physical Chemistry, 2007, 58: 85-112. |
50 | Zhao S L, Jin Z H, Wu J Z. New theoretical method for rapid prediction of solvation free energy in water[J]. The Journal of Physical Chemistry B, 2011, 115(21): 6971-6975. |
51 | Wu H G, Li Y, Kadirov D, et al. Efficient molecular approach to quantifying solvent-mediated interactions[J]. Langmuir, 2017, 33(42): 11817-11824. |
52 | Liu Y, Liu H L, Hu Y, et al. Development of a density functional theory in three-dimensional nanoconfined space: H2 storage in metal-organic frameworks[J]. The Journal of Physical Chemistry B, 2009, 113(36): 12326-12331. |
53 | Liu Y, Liu H L, Hu Y, et al. Density functional theory for adsorption of gas mixtures in metal-organic frameworks[J]. The Journal of Physical Chemistry B, 2010, 114(8): 2820-2827. |
54 | Lian C, Zhao S, Liu H, et al. Time-dependent density functional theory for the charging kinetics of electric double layer containing room-temperature ionic liquids[J]. The Journal of Chemical Physics, 2016, 145(20): 204707. |
55 | Zhao S L, Wu J Z. Self-consistent equations governing the dynamics of nonequilibrium colloidal systems[J]. The Journal of Chemical Physics, 2011, 134(5): 054514. |
56 | Ma M M, Zhao S L, Liu H L, et al. Microscopic insights into the efficiency of capacitive mixing process[J]. AIChE Journal, 2017, 63(6): 1785-1791. |
57 | Ma M M, Zhao S L, Xu Z L. Investigation of dielectric decrement and correlation effects on electric double-layer capacitance by self-consistent field model[J]. Communications in Computational Physics, 2016, 20(2): 441-458. |
58 | Petrosyan S A, Briere J F, Roundy D, et al. Joint density-functional theory for electronic structure of solvated systems[J]. Physical Review B, 2007, 75(20): 205105. |
59 | Sundararaman R, Arias T A. Efficient classical density-functional theories of rigid-molecular fluids and a simplified free energy functional for liquid water[J]. Computer Physics Communications, 2014, 185(3): 818-825. |
60 | Sundararaman R. Joint density-functional methods for first-principles chemistry in solution[D]. Cornell: Cornell University, 2013. |
61 | Sundararaman R, Letchworth-Weaver K, Schwarz K A, et al. JDFTx: software for joint density-functional theory[J]. SoftwareX, 2017, 6: 278-284. |
62 | Deng S Z, Cai W. Extending the fast multipole method for charges inside a dielectric sphere in an ionic solvent: high-order image approximations for reaction fields[J]. Journal of Computational Physics, 2007, 227(2): 1246-1266. |
63 | Lin Y, Baumketner A, Deng S, et al. An image-based reaction field method for electrostatic interactions in molecular dynamics simulations of aqueous solutions[J]. J. Chem. Phys., 2009, 131(15): 154103. |
64 | Lin Y, Baumketner A, Song W, et al. Ionic solvation studied by image-charge reaction field method[J]. J. Chem. Phys., 2011, 134(4): 044105. |
65 | Qin P, Xu Z, Cai W, et al. Image charge methods for a three-dielectric-layer hybrid solvation model of biomolecules[J]. Communications in Computational Physics, 2009, 6(5): 955-977. |
66 | Tang W Q, Cai C, Zhao S L, et al. Development of reaction density functional theory and its application to glycine tautomerization reaction in aqueous solution[J]. The Journal of Physical Chemistry C, 2018, 122(36): 20745-20754. |
67 | Laidler K J, King M C. Development of transition-state theory[J]. The Journal of Physical Chemistry, 1983, 87(15): 2657-2664. |
68 | Berg M, Harris A L, Harris C B. Rapid solvent-induced recombination and slow energy relaxation in a simple chemical reaction: picosecond studies of iodine photodissociation in CCl4[J]. Physical Review Letters, 1985, 54(9): 951-954. |
69 | Rosenthal S J, Xie X L, Du M, et al. Femtosecond solvation dynamics in acetonitrile: observation of the inertial contribution to the solvent response[J]. The Journal of Chemical Physics, 1991, 95(6): 4715-4718. |
70 |
Cai C, Tang W Q, Qiao C Z, et al. A reaction density functional theory study of solvent effect in the nucleophilic addition reactions in aqueous solution[J]. Green Energy & Environment, 2020, DOI: 10.1016/j.gee.2020.11.028.
DOI |
71 | Zhao S, Ramirez R, Vuilleumier R, et al. Molecular density functional theory of solvation: from polar solvents to water[J]. The Journal of Chemical Physics, 2011, 134(19): 194102. |
72 | Smith M B, March J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure[M]. John Wiley & Sons, 2007. |
73 | Wada G, Tamura E, Okina M, et al. On the ratio of zwitterion form to uncharged form of glycine at equilibrium in various aqueous media[J]. Bulletin of the Chemical Society of Japan, 1982, 55(10): 3064-3067. |
74 | Császár A G. On the structures of free glycine and α-alanine[J]. Journal of Molecular Structure, 1995, 346: 141-152. |
75 | Tortonda F R, Pascual-Ahuir J L, Silla E, et al. Why is glycine a zwitterion in aqueous solution? A theoretical study of solvent stabilising factors[J]. Chemical Physics Letters, 1996, 260(1/2): 21-26. |
76 | Tortonda F R, Pascual-Ahuir J L, Silla E, et al. Aminoacid zwitterions in solution: geometric, energetic, and vibrational analysis using density functional theory-continuum model calculations[J]. The Journal of Chemical Physics, 1998, 109(2): 592-603. |
77 | Balta B, Aviyente V. Solvent effects on glycine (Ⅰ): A supermolecule modeling of tautomerization via intramolecular proton transfer[J]. Journal of Computational Chemistry, 2003, 24(14): 1789-1802. |
78 | Tortonda F R, Silla E, Tuñón I, et al. Intramolecular proton transfer of serine in aqueous solution. Mechanism and energetics[J]. Theoretical Chemistry Accounts, 2000, 104(2): 89-95. |
79 | Nagy P I, Noszál B. Theoretical study of the tautomeric/conformational equilibrium of aspartic acid zwitterions in aqueous solution[J]. The Journal of Physical Chemistry A, 2000, 104(29): 6834-6843. |
80 | Slifkin M A, Ali S M. Thermodynamic parameters of the activation of glycine zwitterion protonation reactions[J]. Journal of Molecular Liquids, 1984, 28(4): 215-221. |
81 | Tuñón I, Silla E, Ruiz-López M F. On the tautomerization process of glycine in aqueous solution[J]. Chemical Physics Letters, 2000, 321(5/6): 433-437. |
82 | Tolosa S, Hidalgo A, Sansón J A. Amino acid tautomerization reactions in aqueous solution via concerted and assisted mechanisms using free energy curves from MD simulation[J]. The Journal of Physical Chemistry B, 2012, 116(43): 13033-13044. |
83 | Senn H M, Margl P M, Schmid R, et al. Ab initio molecular dynamics with a continuum solvation model[J]. The Journal of Chemical Physics, 2003, 118(3): 1089-1100. |
84 | Bandyopadhyay P, Gordon M S, Mennucci B, et al. An integrated effective fragment-polarizable continuum approach to solvation: theory and application to glycine[J]. The Journal of Chemical Physics, 2002, 116(12): 5023. |
85 | Leung K, Rempe S B. Ab initio molecular dynamics study of glycine intramolecular proton transfer in water[J]. The Journal of Chemical Physics, 2005, 122(18): 184506. |
86 | Resasco D E, Wang B, Crossley S. Zeolite-catalysed C—C bond forming reactions for biomass conversion to fuels and chemicals[J]. Catalysis Science & Technology, 2016, 6(8): 2543-2559. |
87 | Wang B, Wright D, Cliffel D, et al. Ionization-enhanced decomposition of 2, 4, 6-trinitrotoluene (TNT) molecules[J]. The Journal of Physical Chemistry A, 2011, 115(28): 8142-8146. |
88 | Edsall J T, Blanchard M H. The activity ratio of zwitterions and uncharged molecules in ampholyte solutions. The dissociation constants of amino acid esters[J]. Journal of the American Chemical Society, 1933, 55(6): 2337-2353. |
89 | Sharma R, Kumar N, Yaday R. Chemistry and pharmacological importance of 1, 3, 4-oxadiazole derivatives[J]. Research & Reviews: Journal of Chemistry, 2015, 4(2): 1-27. |
90 | Burcu Arslan N, Özdemir N, Dayan O, et al. Direct and solvent-assisted thione-thiol tautomerism in 5-(thiophen-2-yl)-1, 3, 4-oxadiazole-2(3H)-thione: experimental and molecular modeling study[J]. Chemical Physics, 2014, 439: 1-11. |
91 | Fershtat L L, Epishina M A, Ovchinnikov I V, et al. Side-chain prototropic tautomerism of 4-hydroxyfuroxans in methylation reactions[J]. Tetrahedron Letters, 2016, 57(50): 5685-5689. |
92 | Bondock S, Adel S, Etman H A, et al. Synthesis and antitumor evaluation of some new 1, 3, 4-oxadiazole-based heterocycles[J]. European Journal of Medicinal Chemistry, 2012, 48: 192-199. |
93 | Omar F, Mahfouz N, Design Rahman M., synthesis and antiinflammatory activity of some1, 3, 4-oxadiazole derivatives[J]. European Journal of Medicinal Chemistry, 1996, 31(10): 819-825. |
94 | Ghiran D, Schwartz I, Simiti I. Antimitotic activity of 2-amino-1, 3, 4-oxadiazoles[J]. Farmacia, 1974, 22: 141. |
95 | Yale H L, Losee K. 2-Amino-5-substituted 1, 3, 4-oxadiazoles and 5-imino-2-substituted Δ2-1, 3, 4-oxadiazolines. A group of novel muscle relaxants[J]. Journal of Medicinal Chemistry, 1966, 9(4): 478-483. |
96 | Tang W Q, Yu H P, Cai C, et al. Solvent effects on a derivative of 1, 3, 4-oxadiazole tautomerization reaction in water: a reaction density functional theory study[J]. Chemical Engineering Science, 2020, 213: 115380. |
97 | Xie J, Otto R, Mikosch J, et al. Identification of atomic-level mechanisms for gas-phase X-+CH3Y SN2 reactions by combined experiments and simulations[J]. Accounts of Chemical Research, 2014, 47(10): 2960-2969. |
98 | Abboud J U M, Notario R, Bertrán J, et al. One century of physical organic chemistry: the Menshutkin reaction[M]//Progress in Physical Organic Chemistry. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007: 1-182. |
99 | Xie J, Hase W L. Rethinking the SN2 reaction[J]. Science, 2016, 352(6281): 32-33. |
100 | Ingold C K. Structure and Mechanism in Organic Chemistry[M]. Ithaca: Cornell University Press, 1953. |
101 | Olmstead W N, Brauman J I. Gas-phase nucleophilic displacement reactions[J]. Journal of Mass Spectrometry, 1995, 30(12): 1653-1662. |
102 | Chabinyc M L, Craig S L, Regan C K, et al. Gas-phase ionic reactions: dynamics and mechanism of nucleophilic displacements[J]. Science, 1998, 279(5358): 1882-1886. |
103 | Hwang J K, King G, Creighton S, et al. Simulation of free energy relationships and dynamics of SN2 reactions in aqueous solution[J]. Journal of the American Chemical Society, 1988, 110(16): 5297-5311. |
104 | Mikosch J, Trippel S, Eichhorn C, et al. Imaging nucleophilic substitution dynamics[J]. Science, 2008, 319(5860): 183-186. |
105 | Chandrasekhar J, Smith S F, Jorgensen W L. SN2 reaction profiles in the gas phase and aqueous solution[J]. Journal of the American Chemical Society, 1984, 106(10): 3049-3050. |
106 | Manikandan P, Zhang J X, Hase W L. Chemical dynamics simulations of X- + CH3Y → XCH3 + Y- gas-phase SN2 nucleophilic substitution reactions. Nonstatistical dynamics and nontraditional reaction mechanisms[J]. The Journal of Physical Chemistry A, 2012, 116(12): 3061-3080. |
107 | Doi K, Togano E, Xantheas S S, et al. Microhydration effects on the intermediates of the SN2 reaction of iodide anion with methyl iodide[J]. Angewandte Chemie International Edition, 2013, 52(16): 4380-4383. |
108 | Beronius P, Tyrrell V, Tufte T, et al. Electrochemical methods in kinetic studies of isotopic exchange reactions (I): Application to systems of the type RI + I*- ⇌RI* + I-[J]. Acta Chemica Scandinavica, 1961, 15: 1151-1164. |
109 | Gao J L. A priori computation of a solvent-enhanced SN2 reaction profile in water: the Menshutkin reaction[J]. Journal of the American Chemical Society, 1991, 113(20): 7796-7797. |
110 | Gao J L, Xia X F. A two-dimensional energy surface for a type II SN2 reaction in aqueous solution[J]. Journal of the American Chemical Society, 1993, 115(21): 9667-9675. |
111 | O'Hair R A J, Davico G E, Hacaloglu J, et al. Measurements of solvent and secondary kinetic isotope effects for the gas-phase SN2 reactions of fluoride with methyl halides[J]. Journal of the American Chemical Society, 1994, 116(8): 3609-3610. |
112 | Bohme D K, Rakshit A B, MacKay G I. Bridging the gap between the gas phase and solution: transition in the kinetics of acid-base reactions[J]. Journal of the American Chemical Society, 1982, 104(4): 1100-1101. |
113 | Bohme D K, Raksit A B. Gas-phase measurements of the influence of stepwise solvation on the kinetics of nucleophilic displacement reactions with chloromethane and bromomethane at room temperature[J]. Journal of the American Chemical Society, 1984, 106(12): 3447-3452. |
114 | Bohme D K, Raksit A B. Gas-phase measurements of the influence of stepwise solvation on the kinetics of SN2 reactions of solvated F– with CH3Cl and CH3Br and of solvated Cl– with CH3Br[J]. Canadian Journal of Chemistry, 1985, 63(11): 3007-3011. |
115 | Hierl P M, Ahrens A F, Henchman M, et al. Nucleophilic displacement as a function of hydration number and temperature: rate constants and product distributions for OD-(D2O)0, 1, 2, 3 + CH3Cl at 200—500 K[J]. Journal of the American Chemical Society, 1986, 108(11): 3142-3143. |
116 | Henchman M, Paulson J F, Hierl P M. Nucleophilic displacement with a selectively solvated nucleophile: the system hydrated hydroxide ion (OH-•H2O) + bromomethane at 300 K[J]. Journal of the American Chemical Society, 1983, 105(16): 5509-5510. |
117 | Cai C, Tang W, Qiao C, et al. A reaction density functional theory study of the solvent effect in prototype SN2 reactions in aqueous solution[J]. Physical Chemistry Chemical Physics, 2019, 21(45): 24876-24883. |
118 | Tang W Q, Zhao J H, Jiang P, et al. Solvent effects on the symmetric and asymmetric SN2 reactions in acetonitrile solution: a reaction density functional theory study[J]. The Journal of Physical Chemistry B, 2020, 124(15): 3114-3122. |
119 | Castejon H, Wiberg K B. Solvent effects on methyl transfer reactions (1): The Menshutkin reaction[J]. Journal of the American Chemical Society, 1999, 121(10): 2139-2146. |
120 | Streitwieser A. Solvolytic displacement reactions at saturated carbon atoms[J]. Chemical Reviews, 1956, 56(4): 571-752. |
121 | Charton M. Steric effects (Ⅲ): Bimolecular nucleophilic substitution[J]. Journal of the American Chemical Society, 1975, 97(13): 3694-3697. |
122 | Miners S, Fay M W, Baldoni M, et al. Steric and electronic control of 1, 3-dipolar cycloaddition reactions in carbon nanotube nanoreactors[J]. The Journal of Physical Chemistry C, 2019, 123(10): 6294-6302. |
123 | Fu J, Feng X, Liu Y B, et al. Mechanistic insights into the pore confinement effect on bimolecular and monomolecular cracking mechanisms of n-octane over HY and HZSM-5 zeolites: a DFT study[J]. The Journal of Physical Chemistry C, 2018, 122(23): 12222-12230. |
124 | Trembleau L, Rebek J. Helical conformation of alkanes in a hydrophobic cavitand[J]. Science, 2003, 301(5637): 1219-1220. |
125 | Endo O, Nakamura M, Amemiya K, et al. Compression-induced conformation and orientation changes in an n-alkane monolayer on a Au(111) surface[J]. Langmuir, 2017, 33(16): 3934-3940. |
126 | Scarso A, Trembleau L, Rebek J. Encapsulation induces helical folding of alkanes[J]. Angewandte Chemie International Edition, 2003, 42(44): 5499-5502. |
127 | Jordan J H, Gibb B C. Molecular containers assembled through the hydrophobic effect[J]. Chemical Society Reviews, 2015, 44(2): 547-585. |
128 | Yu X C, Tang W Q, Zhao T, et al. Confinement effect on molecular conformation of alkanes in water-filled cavitands: a combined quantum/classical density functional theory study[J]. Langmuir, 2018, 34(45): 13491-13496. |
129 | Keil F J. Diffusion and reaction in porous networks[J]. Catalysis Today, 1999, 53(2): 245-258. |
130 | 刘洪来, 王建国. 化工过程中的表(界)面科学与工程[M]//化学工程学科前沿与展望. 北京: 科学出版社, 2012. |
Liu H L, Wang J G. Surface (interfacial) science and engineering in the process of chemical engineering[M]//Frontiers and Prospects of Chemical Engineering. Beijing: Science Press, 2012. | |
131 | Mathew K, Sundararaman R, Letchworth-Weaver K, et al. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways[J]. The Journal of Chemical Physics, 2014, 140(8): 084106. |
132 | Zhang X Q, Chen X, Hou L P, et al. Regulating anions in the solvation sheath of lithium ions for stable lithium metal batteries[J]. ACS Energy Letters, 2019, 4(2): 411-416. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[5] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[6] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[7] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[8] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[9] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[10] | 董茂林, 陈李栋, 黄六莲, 吴伟兵, 戴红旗, 卞辉洋. 酸性助水溶剂制备木质纳米纤维素及功能应用研究进展[J]. 化工学报, 2023, 74(6): 2281-2295. |
[11] | 张全碧, 羊依金, 郭旭晶. 芬顿氧化法对利福平制药废水中溶解性有机物的催化降解[J]. 化工学报, 2023, 74(5): 2217-2227. |
[12] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[13] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[14] | 吕阳光, 左培培, 杨正金, 徐铜文. 三嗪框架聚合物膜用于有机纳滤甲醇/正己烷分离[J]. 化工学报, 2023, 74(4): 1598-1606. |
[15] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 763
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1040
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||