化工学报 ›› 2021, Vol. 72 ›› Issue (10): 5114-5122.DOI: 10.11949/0438-1157.20210374
收稿日期:
2021-03-12
修回日期:
2021-05-18
出版日期:
2021-10-05
发布日期:
2021-10-05
通讯作者:
占敬敬
作者简介:
彭爱夏(1995—),女,硕士研究生,基金资助:
Aixia PENG(),Jingjing ZHAN(),Minghuo WU
Received:
2021-03-12
Revised:
2021-05-18
Online:
2021-10-05
Published:
2021-10-05
Contact:
Jingjing ZHAN
摘要:
当前,纳米粒子在土壤等多孔介质中的传输多采用单集去除率(η)进行定量描述。然而,单集去除率仅考虑单个介质颗粒对纳米粒子的作用,并未考虑介质颗粒之间的孔隙对纳米粒子的拦截效应,如T-E模型。鉴于此,采用持水度(fr)来定量反映多孔介质的孔隙特征,并对现有的T-E模型进行了修正。实验表明,纳米粒子通过具有相同孔隙度(f)砂柱的穿透率并不相同,且与持水度(fr)呈反比关系。在此基础上,将截留机制产生的碰撞效率(ηI)调整为与孔隙度(f)和持水度(fr)同时相关的表达式来实现对原有模型的优化。此外,通过砂柱对纳米二氧化硅(nSiO2)的传输实验和纳米二氧化钛(nTiO2)在不同粒径石英砂中的传输实验证明,优化模型适用于不同粒径的多孔介质并可以更准确地预测纳米粒子在多孔介质中的迁移。
中图分类号:
彭爱夏,占敬敬,吴明火. 纳米粒子在多孔介质中迁移模型的优化[J]. 化工学报, 2021, 72(10): 5114-5122.
Aixia PENG,Jingjing ZHAN,Minghuo WU. Optimization of nanoparticles transport model in porous media[J]. CIESC Journal, 2021, 72(10): 5114-5122.
参数 | 物理意义 | 表达式 |
---|---|---|
孔隙度常数 | ||
纵横比 | ||
佩克莱数 | ||
范德华数 | ||
引力数 | ||
重力数 |
表1 T-E模型中参数的表达式
Table 1 Expression of parameters in the T-E model
参数 | 物理意义 | 表达式 |
---|---|---|
孔隙度常数 | ||
纵横比 | ||
佩克莱数 | ||
范德华数 | ||
引力数 | ||
重力数 |
持水度fr | 穿透率C/C0 | 孔隙常数F | 去除率η | 碰撞效率η0' | 拦截机制的碰撞效率ηI' |
---|---|---|---|---|---|
0.1275 | 0.8333 | 0.2865 | 0.00111 | 0.04086 (=η0) | 0.00486 (=ηI) |
0.1313 | 0.8496 | 0.2951 | 0.00987 | 0.03652 | 0.00052 |
0.1376 | 0.8370 | 0.3092 | 0.00108 | 0.03987 | 0.00387 |
0.1421 | 0.8287 | 0.3193 | 0.00114 | 0.04208 | 0.00608 |
0.1598 | 0.8259 | 0.3591 | 0.00116 | 0.04284 | 0.00684 |
0.1663 | 0.8125 | 0.3737 | 0.00126 | 0.04650 | 0.01050 |
0.1721 | 0.8185 | 0.3867 | 0.00121 | 0.04487 | 0.00887 |
0.1820 | 0.8133 | 0.4090 | 0.00125 | 0.04628 | 0.01028 |
0.1894 | 0.8143 | 0.4256 | 0.00124 | 0.04601 | 0.01001 |
0.1953 | 0.8052 | 0.4389 | 0.00131 | 0.04852 | 0.01251 |
0.1971 | 0.8094 | 0.4429 | 0.00128 | 0.04737 | 0.01137 |
0.2116 | 0.7961 | 0.4755 | 0.00138 | 0.05107 | 0.01507 |
0.2237 | 0.7883 | 0.5027 | 0.00144 | 0.05330 | 0.01730 |
0.2296 | 0.7935 | 0.5160 | 0.00140 | 0.05181 | 0.01581 |
0.2318 | 0.7811 | 0.5209 | 0.00150 | 0.05534 | 0.01934 |
0.2351 | 0.7762 | 0.5283 | 0.00153 | 0.05676 | 0.02076 |
0.2453 | 0.7631 | 0.5512 | 0.00164 | 0.06057 | 0.02457 |
0.2487 | 0.7708 | 0.5589 | 0.00158 | 0.05830 | 0.02230 |
表2 nTiO2在石英砂中迁移的实验数据(孔隙度为0.445)
Table 2 Experimental data of nTiO2 transported in quartz sand (porosity is 0.445)
持水度fr | 穿透率C/C0 | 孔隙常数F | 去除率η | 碰撞效率η0' | 拦截机制的碰撞效率ηI' |
---|---|---|---|---|---|
0.1275 | 0.8333 | 0.2865 | 0.00111 | 0.04086 (=η0) | 0.00486 (=ηI) |
0.1313 | 0.8496 | 0.2951 | 0.00987 | 0.03652 | 0.00052 |
0.1376 | 0.8370 | 0.3092 | 0.00108 | 0.03987 | 0.00387 |
0.1421 | 0.8287 | 0.3193 | 0.00114 | 0.04208 | 0.00608 |
0.1598 | 0.8259 | 0.3591 | 0.00116 | 0.04284 | 0.00684 |
0.1663 | 0.8125 | 0.3737 | 0.00126 | 0.04650 | 0.01050 |
0.1721 | 0.8185 | 0.3867 | 0.00121 | 0.04487 | 0.00887 |
0.1820 | 0.8133 | 0.4090 | 0.00125 | 0.04628 | 0.01028 |
0.1894 | 0.8143 | 0.4256 | 0.00124 | 0.04601 | 0.01001 |
0.1953 | 0.8052 | 0.4389 | 0.00131 | 0.04852 | 0.01251 |
0.1971 | 0.8094 | 0.4429 | 0.00128 | 0.04737 | 0.01137 |
0.2116 | 0.7961 | 0.4755 | 0.00138 | 0.05107 | 0.01507 |
0.2237 | 0.7883 | 0.5027 | 0.00144 | 0.05330 | 0.01730 |
0.2296 | 0.7935 | 0.5160 | 0.00140 | 0.05181 | 0.01581 |
0.2318 | 0.7811 | 0.5209 | 0.00150 | 0.05534 | 0.01934 |
0.2351 | 0.7762 | 0.5283 | 0.00153 | 0.05676 | 0.02076 |
0.2453 | 0.7631 | 0.5512 | 0.00164 | 0.06057 | 0.02457 |
0.2487 | 0.7708 | 0.5589 | 0.00158 | 0.05830 | 0.02230 |
优化前 | 优化后 | |||||||
---|---|---|---|---|---|---|---|---|
0.025 | 2.3×10-6 | 0.000409 | 1.1×10-6 | 0.025 | 0.01637 | 0.01523 | 0.04023 | 0.01017 |
0.025 | 2.3×10-6 | 0.000356 | 1.1×10-6 | 0.025 | 0.01425 | 0.00989 | 0.03489 | 0.01021 |
0.025 | 2.3×10-6 | 0.000349 | 1.1×10-6 | 0.025 | 0.01397 | 0.00925 | 0.03426 | 0.01020 |
0.025 | 2.3×10-6 | 0.000326 | 1.1×10-6 | 0.025 | 0.01303 | 0.00705 | 0.03206 | 0.01017 |
0.025 | 2.3×10-6 | 0.000316 | 1.1×10-6 | 0.025 | 0.01262 | 0.00593 | 0.03094 | 0.01020 |
0.025 | 2.3×10-6 | 0.000303 | 1.1×10-6 | 0.025 | 0.01210 | 0.00466 | 0.02967 | 0.01020 |
表3 优化前后T-E模型计算值(nSiO2)
Table 3 Values calculated by the T-E model before and after optimization (nSiO2)
优化前 | 优化后 | |||||||
---|---|---|---|---|---|---|---|---|
0.025 | 2.3×10-6 | 0.000409 | 1.1×10-6 | 0.025 | 0.01637 | 0.01523 | 0.04023 | 0.01017 |
0.025 | 2.3×10-6 | 0.000356 | 1.1×10-6 | 0.025 | 0.01425 | 0.00989 | 0.03489 | 0.01021 |
0.025 | 2.3×10-6 | 0.000349 | 1.1×10-6 | 0.025 | 0.01397 | 0.00925 | 0.03426 | 0.01020 |
0.025 | 2.3×10-6 | 0.000326 | 1.1×10-6 | 0.025 | 0.01303 | 0.00705 | 0.03206 | 0.01017 |
0.025 | 2.3×10-6 | 0.000316 | 1.1×10-6 | 0.025 | 0.01262 | 0.00593 | 0.03094 | 0.01020 |
0.025 | 2.3×10-6 | 0.000303 | 1.1×10-6 | 0.025 | 0.01210 | 0.00466 | 0.02967 | 0.01020 |
优化前 | 优化后 | |||||||
---|---|---|---|---|---|---|---|---|
0.058 | 2.0×10-6 | 0.001362 | 2.5×10-6 | 0.058 | 0.02337 | 0.15141 | 0.20968 | 0.00649 |
0.058 | 2.0×10-6 | 0.001227 | 2.5×10-6 | 0.058 | 0.02105 | 0.13077 | 0.18903 | 0.00649 |
0.058 | 2.0×10-6 | 0.001041 | 2.5×10-6 | 0.058 | 0.01785 | 0.10399 | 0.16225 | 0.00641 |
0.058 | 2.0×10-6 | 0.001017 | 2.5×10-6 | 0.058 | 0.01745 | 0.09987 | 0.15813 | 0.00643 |
0.058 | 2.0×10-6 | 0.000860 | 2.5×10-6 | 0.058 | 0.01476 | 0.07661 | 0.13488 | 0.00638 |
表4 优化前后T-E模型计算值(nTiO2)
Table 4 Values calculated by the T-E model before and after optimization(nTiO2)
优化前 | 优化后 | |||||||
---|---|---|---|---|---|---|---|---|
0.058 | 2.0×10-6 | 0.001362 | 2.5×10-6 | 0.058 | 0.02337 | 0.15141 | 0.20968 | 0.00649 |
0.058 | 2.0×10-6 | 0.001227 | 2.5×10-6 | 0.058 | 0.02105 | 0.13077 | 0.18903 | 0.00649 |
0.058 | 2.0×10-6 | 0.001041 | 2.5×10-6 | 0.058 | 0.01785 | 0.10399 | 0.16225 | 0.00641 |
0.058 | 2.0×10-6 | 0.001017 | 2.5×10-6 | 0.058 | 0.01745 | 0.09987 | 0.15813 | 0.00643 |
0.058 | 2.0×10-6 | 0.000860 | 2.5×10-6 | 0.058 | 0.01476 | 0.07661 | 0.13488 | 0.00638 |
1 | Kim H, Beack S, Han S, et al. Multifunctional photonic nanomaterials for diagnostic, therapeutic, and theranostic applications[J]. Advanced Materials, 2018, 30(10): 1701460. |
2 | Song Y, Fang G D, Zhu C Y, et al. Zero-valent iron activated persulfate remediation of polycyclic aromatic hydrocarbon-contaminated soils: an in situ pilot-scale study[J]. Chemical Engineering Journal, 2019, 355: 65-75. |
3 | Tang L, Feng H P, Tang J, et al. Treatment of arsenic in acid wastewater and river sediment by Fe@Fe2O3 nanobunches: the effect of environmental conditions and reaction mechanism[J]. Water Research, 2017, 117: 175-186. |
4 | Wang H L, Liang X T, Wang J T, et al. Multifunctional inorganic nanomaterials for energy applications[J]. Nanoscale, 2020, 12(1): 14-42. |
5 | 姜雪辉, 范伟, 霍明昕, 等. 离子组成对氧化石墨烯在饱和多孔介质中迁移行为的影响[J]. 化工学报, 2015, 66(4): 1484-1490. |
Jiang X H, Fan W, Huo M X, et al. Effect of cations composition on transport of graphene oxide in saturated porous media[J]. CIESC Journal, 2015, 66(4): 1484-1490. | |
6 | Molnar I L, Pensini E, Asad M A, et al. Colloid transport in porous media: a review of classical mechanisms and emerging topics[J]. Transport in Porous Media, 2019, 130(1): 129-156. |
7 | Sun PD, Shijirbaatar A, Fang J, et al. Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns[J]. Science of the Total Environment, 2015, 505: 189-198. |
8 | Guo Y, Lou J C, Cho J K, et al. Transport of colloidal particles in microscopic porous medium analogues with surface charge heterogeneity: experiments and the fundamental role of single-bead deposition[J]. Environmental Science & Technology, 2020, 54(21): 13651-13660. |
9 | Qu D, Ren H J, Zhou R, et al. Visualisation study on Pseudomonas migulae AN-1 transport in saturated porous media[J]. Water Research, 2017, 122: 329-336. |
10 | Li J, Xie X H, Ghoshal S. Correlation equation for predicting the single-collector contact efficiency of colloids in a horizontal flow[J]. Langmuir, 2015, 31(26): 7210-7219. |
11 | Swift D L, Friedlander S K. Coagulation of hydrosols by Brownian motion + laminar shear flow[J]. Journal of Colloid Science, 1964, 19(7): 621. |
12 | Logan B E, Jewett D G, Arnold R G, et al. Clarification of clean-bed filtration models[J]. Journal of Environmental Engineering, 1995, 121(12): 869-873. |
13 | Yao K M, Habibian M T, O'Melia C R. Water and waste water filtration. Concepts and applications[J]. Environmental Science & Technology, 1971, 5(11): 1105-1112. |
14 | Ma H L, Hradisky M, Johnson W P. Extending applicability of correlation equations to predict colloidal retention in porous media at low fluid velocity[J]. Environmental Science & Technology, 2013, 47(5): 2272-2278. |
15 | Nelson K E, Ginn T R. New collector efficiency equation for colloid filtration in both natural and engineered flow conditions[J]. Water Resources Research, 2011, 47(5): W05543. |
16 | Long W, Hilpert M. A correlation for the collector efficiency of Brownian particles in clean-bed filtration in sphere packings by a lattice-Boltzmann method[J]. Environmental Science & Technology, 2009, 43(12): 4419-4424. |
17 | Tufenkji N, Elimelech M. Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities[J]. Langmuir, 2005, 21(3): 841-852. |
18 | Rajagopalan R, Tien C. Trajectory analysis of deep-bed filtration with the sphere-in-cell porous media model[J]. AIChE Journal, 1976, 22(3): 523-533. |
19 | Tufenkji N, Elimelech M. Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media[J]. Environmental Science & Technology, 2004, 38(2): 529-536. |
20 | Tufenkji N, Miller G F, Ryan J N, et al. Transport of cryptosporidium oocysts in porous media: role of straining and physicochemical filtration[J]. Environmental Science & Technology, 2004, 38(22): 5932-5938. |
21 | Yu Z G, Hu L M, Lo I M C. Transport of the arsenic (As)-loaded nano zero-valent iron in groundwater-saturated sand columns: roles of surface modification and As loading[J]. Chemosphere, 2019, 216: 428-436. |
22 | Taghavy A, Mittelman A, Wang Y G, et al. Mathematical modeling of the transport and dissolution of citrate-stabilized silver nanoparticles in porous media[J]. Environmental Science & Technology, 2013, 47(15): 8499-8507. |
23 | Jones E H, Su C M. Fate and transport of elemental copper (Cu0) nanoparticles through saturated porous media in the presence of organic materials[J]. Water Research, 2012, 46(7): 2445-2456. |
24 | Happel J. Viscous flow in multiparticle systems: slow motion of fluids relative to beds of spherical particles[J]. AIChE Journal, 1958, 4(2): 197-201. |
25 | 冶雪艳, 杜新强, 张赫轩, 等. 回灌过程中离子强度和水流流速对胶体粒子在多孔介质中堵塞的影响[J]. 化工学报, 2017, 68(12): 4793-4801. |
Ye X Y, Du X Q, Zhang H X, et al. Effects of solution ionic strength and flow velocity on colloid clogging in saturated porous media during artificial recharge[J]. CIESC Journal, 2017, 68(12): 4793-4801. | |
26 | Bradford S A, Simunek J, Bettahar M, et al. Straining of colloids at textural interfaces[J]. Water Resources Research, 2005, 41(10): W10404. |
27 | Bradford S A, Simunek J, Bettahar M, et al. Significance of straining in colloid deposition: evidence and implications[J]. Water Resources Research, 2006, 42(12): W12S15. |
28 | Liu Q S, Cui X Z, Zhang C Y, et al. Experimental investigation of suspended particles transport through porous media: particle and grain size effect[J]. Environmental Technology, 2016, 37(7): 854-864. |
29 | 祝景彬, 贺慧丹, 李红琴, 等. 牧压梯度下高寒草甸土壤容重及持水能力的变化特征[J]. 水土保持研究, 2018, 25(5): 66-71. |
Zhu J B, He H D, Li H Q, et al. Characteristics of soil bulk density and soil water-holding capacity in alpine meadow under grazing gradients[J]. Research of Soil and Water Conservation, 2018, 25(5): 66-71. | |
30 | Filimonova S V, Knicker H, Häusler W, et al. 129Xe NMR spectroscopy of adsorbed xenon as an approach for the characterisation of soil meso- and microporosity[J]. Geoderma, 2004, 122(1): 25-42. |
[1] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[2] | 连梦雅, 谈莹莹, 王林, 陈枫, 曹艺飞. 地下水预热新风一体化热泵空调系统制热性能研究[J]. 化工学报, 2023, 74(S1): 311-319. |
[3] | 金正浩, 封立杰, 李舒宏. 氨水溶液交叉型再吸收式热泵的能量及分析[J]. 化工学报, 2023, 74(S1): 53-63. |
[4] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[5] | 王浩, 王振雷. 基于自适应谱方法的裂解炉烧焦模型化简策略[J]. 化工学报, 2023, 74(9): 3855-3864. |
[6] | 仪显亨, 周骛, 蔡小舒, 蔡天意. 光纤后向动态光散射测量纳米颗粒的浓度适用范围研究[J]. 化工学报, 2023, 74(8): 3320-3328. |
[7] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[8] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[9] | 于旭东, 李琪, 陈念粗, 杜理, 任思颖, 曾英. 三元体系KCl + CaCl2 + H2O 298.2、323.2及348.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(8): 3256-3265. |
[10] | 诸程瑛, 王振雷. 基于改进深度强化学习的乙烯裂解炉操作优化[J]. 化工学报, 2023, 74(8): 3429-3437. |
[11] | 闫琳琦, 王振雷. 基于STA-BiLSTM-LightGBM组合模型的多步预测软测量建模[J]. 化工学报, 2023, 74(8): 3407-3418. |
[12] | 郭雨莹, 敬加强, 黄婉妮, 张平, 孙杰, 朱宇, 冯君炫, 陆洪江. 稠油管道水润滑减阻及压降预测模型修正[J]. 化工学报, 2023, 74(7): 2898-2907. |
[13] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[14] | 李艳辉, 丁邵明, 白周央, 张一楠, 于智红, 邢利梅, 高鹏飞, 王永贞. 非常规服役超临界锅炉的微纳尺度腐蚀动力学模型建立及应用[J]. 化工学报, 2023, 74(6): 2436-2446. |
[15] | 李勇, 高佳琦, 杜超, 赵亚丽, 李伯琼, 申倩倩, 贾虎生, 薛晋波. Ni@C@TiO2核壳双重异质结的构筑及光热催化分解水产氢[J]. 化工学报, 2023, 74(6): 2458-2467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||