化工学报 ›› 2021, Vol. 72 ›› Issue (10): 5284-5293.DOI: 10.11949/0438-1157.20210569
收稿日期:
2021-04-23
修回日期:
2021-06-02
出版日期:
2021-10-05
发布日期:
2021-10-05
通讯作者:
贺益君
作者简介:
王欣欣(1996—),女,硕士研究生,基金资助:
Xinxin WANG1(),Xiaojian DONG2,Jiani SHEN2,Baofeng WANG1,Yijun HE2()
Received:
2021-04-23
Revised:
2021-06-02
Online:
2021-10-05
Published:
2021-10-05
Contact:
Yijun HE
摘要:
冷热电联供是提高能源综合利用效率的有效途径,其系统设计与运行策略通常相互耦合,因此实施联供系统的集成优化至关重要。本文同时考虑全生命周期内的投资与运行成本,提出以年度总成本最小化为优化目标,结合联供系统中燃气轮机、余热锅炉、吸收式制冷机等设备特性方程,以及针对以电定热、以热定电和混合热电三类典型运行策略,设置了冷、热和电三种负荷需求能量平衡方程,最终构建了包含固定电/热效率和动态电/热效率的联供系统设计与运行集成优化模型。所提方法应用于典型商业楼宇的冷热电联供系统优化设计,结果表明,只有通过综合运用混合热电运行策略、动态电/热效率和全年负荷特性数据,才有望获得合理可行的最优设计方案。
中图分类号:
王欣欣,董潇健,沈佳妮,王保峰,贺益君. 冷热电联供系统设计和运行集成优化[J]. 化工学报, 2021, 72(10): 5284-5293.
Xinxin WANG,Xiaojian DONG,Jiani SHEN,Baofeng WANG,Yijun HE. Integrated design and operation of combined cooling, heating and power system[J]. CIESC Journal, 2021, 72(10): 5284-5293.
i | ai | bi | ci | di |
---|---|---|---|---|
1 | 0.1283 | -0.6592 | 0.7945 | 0.003 |
2 | -0.7098 | 1.5206 | -1.1191 | 0.835 |
表1 多项式模型系数[33]
Table 1 Coefficients of polynomial model[33]
i | ai | bi | ci | di |
---|---|---|---|---|
1 | 0.1283 | -0.6592 | 0.7945 | 0.003 |
2 | -0.7098 | 1.5206 | -1.1191 | 0.835 |
能源 | 价格/(CNY/kWh) | 时间段 |
---|---|---|
天然气 | 0.194 | 00:00~24:00 |
电网 | 1.256 | 11:00~14:00; 20:00~21:00 |
1.582 | 14:00~16:00; 19:00~20:00 | |
0.713 | 06:00~11:00; 16:00~19:00;21:00~23:00 | |
0.302 | 23:00~06:00 |
表2 天然气及买电价格
Table 2 Unit prices of natural gas and electricity from grid
能源 | 价格/(CNY/kWh) | 时间段 |
---|---|---|
天然气 | 0.194 | 00:00~24:00 |
电网 | 1.256 | 11:00~14:00; 20:00~21:00 |
1.582 | 14:00~16:00; 19:00~20:00 | |
0.713 | 06:00~11:00; 16:00~19:00;21:00~23:00 | |
0.302 | 23:00~06:00 |
主要设备 | 效率 | 单位价格/CNY |
---|---|---|
燃气轮机 | 3000 | |
余热锅炉 | 0.85 | 2000 |
锅炉 | 0.80(热水) | 2200 |
0.08(烟气) | ||
吸收式制冷机 | 0.70 | 1500 |
电制冷机 | 3.00 | 1000 |
表3 系统主要设备参数
Table 3 Main equipment parameters of the system
主要设备 | 效率 | 单位价格/CNY |
---|---|---|
燃气轮机 | 3000 | |
余热锅炉 | 0.85 | 2000 |
锅炉 | 0.80(热水) | 2200 |
0.08(烟气) | ||
吸收式制冷机 | 0.70 | 1500 |
电制冷机 | 3.00 | 1000 |
案例 | 负荷率 | 电效率 | 热效率 |
---|---|---|---|
LP1 | 0.2 | 0.14 | 0.67 |
LP2 | 0.4 | 0.22 | 0.59 |
LP3 | 0.6 | 0.27 | 0.56 |
LP4 | 0.8 | 0.28 | 0.55 |
LP5 | 1.0 | 0.27 | 0.53 |
表4 不同模型电/热效率参数值
Table 4 Parameter values of electrical/thermal efficiency for different models
案例 | 负荷率 | 电效率 | 热效率 |
---|---|---|---|
LP1 | 0.2 | 0.14 | 0.67 |
LP2 | 0.4 | 0.22 | 0.59 |
LP3 | 0.6 | 0.27 | 0.56 |
LP4 | 0.8 | 0.28 | 0.55 |
LP5 | 1.0 | 0.27 | 0.53 |
案例 | ATC/104CNY | ||
---|---|---|---|
FEL | FTL | FHL | |
LP1 | — | 456.8 | 278.5 |
LP2 | — | 466.5 | 309.2 |
LP3 | — | 474.2 | 310.0 |
LP4 | 355.1 | 476.4 | 310.4 |
LP5 | — | 475.2 | — |
NLP | 256.2 | 242.7 | 213.2 |
表5 不同方案下系统年度总成本优化结果
Table 5 Optimization results of the ATC of the system under different cases
案例 | ATC/104CNY | ||
---|---|---|---|
FEL | FTL | FHL | |
LP1 | — | 456.8 | 278.5 |
LP2 | — | 466.5 | 309.2 |
LP3 | — | 474.2 | 310.0 |
LP4 | 355.1 | 476.4 | 310.4 |
LP5 | — | 475.2 | — |
NLP | 256.2 | 242.7 | 213.2 |
1 | Al Moussawi H, Fardoun F, Louahlia-Gualous H. Review of tri-generation technologies: design evaluation, optimization, decision-making, and selection approach[J]. Energy Conversion and Management, 2016, 120: 157-196. |
2 | Liu M X, Shi Y, Fang F. Combined cooling, heating and power systems: a survey[J]. Renewable and Sustainable Energy Reviews, 2014, 35: 1-22. |
3 | 李赟, 黄兴华. 冷热电三联供系统配置与运行策略的优化[J]. 动力工程, 2006, 26(6): 894-898. |
Li Y, Huang X H. Integrated optimization of scheme and operation strategy for CCHP system[J]. Journal of Power Engineering, 2006, 26(6): 894-898. | |
4 | 国旭涛, 韩高岩, 吕洪坤. 冷热电三联供系统建模方法综述[J]. 浙江电力, 2020, 39(4): 83-93. |
Guo X T, Han G Y, Lyu H K. Review of modeling methods of combined cooling, heating and power system[J]. Zhejiang Electric Power, 2020, 39(4): 83-93. | |
5 | Song Z H, Liu T, Liu Y J, et al. Study on the optimization and sensitivity analysis of CCHP systems for industrial park facilities[J]. International Journal of Electrical Power & Energy Systems, 2020, 120: 105984. |
6 | Silva H C N, Dutra J C C, Costa J A P, et al. Modeling and simulation of cogeneration systems for buildings on a university campus in Northeast Brazil — a case study[J]. Energy Conversion and Management, 2019, 186: 334-348. |
7 | Gu Q Y, Ren H B, Gao W J, et al. Integrated assessment of combined cooling heating and power systems under different design and management options for residential buildings in Shanghai[J]. Energy and Buildings, 2012, 51: 143-152. |
8 | Espirito Santo D B. Energy and exergy efficiency of a building internal combustion engine trigeneration system under two different operational strategies[J]. Energy and Buildings, 2012, 53: 28-38. |
9 | Jing Y Y, Bai H, Wang J J, et al. Life cycle assessment of a solar combined cooling heating and power system in different operation strategies[J]. Applied Energy, 2012, 92: 843-853. |
10 | Han J, Ouyang L X, Xu Y Z, et al. Current status of distributed energy system in China[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 288-297. |
11 | Zhao W X, Liao Q Y, Xie W, et al. CCHP capacity optimization with user demand characteristics[C]//2018 International Conference on Power System Technology. Guangzhou, IEEE, 2018: 1687-1693. |
12 | Kialashaki Y. A linear programming optimization model for optimal operation strategy design and sizing of the CCHP systems[J]. Energy Efficiency, 2018, 11(1): 225-238. |
13 | Zheng C Y, Wu J Y, Zhai X Q, et al. A novel thermal storage strategy for CCHP system based on energy demands and state of storage tank[J]. International Journal of Electrical Power & Energy Systems, 2017, 85: 117-129. |
14 | Praktiknjo A J, Hähnel A, Erdmann G. Assessing energy supply security: outage costs in private households[J]. Energy Policy, 2011, 39(12): 7825-7833. |
15 | Yang C, Wang X S, Huang M M, et al. Design and simulation of gas turbine-based CCHP combined with solar and compressed air energy storage in a hotel building[J]. Energy and Buildings, 2017, 153: 412-420. |
16 | Guan X, Zhang H L, Xue C Y. A method of selecting cold and heat sources for enterprises in an industrial park with combined cooling, heating, and power[J]. Journal of Cleaner Production, 2018, 190: 608-617. |
17 | Saberi K, Pashaei-Didani H, Nourollahi R, et al. Optimal performance of CCHP based microgrid considering environmental issue in the presence of real time demand response[J]. Sustainable Cities and Society, 2019, 45: 596-606. |
18 | Jing R, Wang M, Wang W, et al. Economic and environmental multi-optimal design and dispatch of solid oxide fuel cell based CCHP system[J]. Energy Conversion and Management, 2017, 154: 365-379. |
19 | Li Y N, Yang W T, He P, et al. Design and management of a distributed hybrid energy system through smart contract and blockchain[J]. Applied Energy, 2019, 248: 390-405. |
20 | Wang J J, Jing Y Y, Zhang C F. Optimization of capacity and operation for CCHP system by genetic algorithm[J]. Applied Energy, 2010, 87(4): 1325-1335. |
21 | Lu S L, Li Y W, Xia H W. Study on the configuration and operation optimization of CCHP coupling multiple energy system[J]. Energy Conversion and Management, 2018, 177: 773-791. |
22 | 华贲, 岳永魁, 田中华, 等. 考虑环境影响的分布式能源系统优化设计与运行策略研究[J]. 沈阳工程学院学报(自然科学版), 2005, 1(1): 6-11. |
Hua B, Yue Y K, Tian Z H, et al. Study on the optimal design and operation strategy of distributed energy system considering environment[J]. Journal of Shenyang Electric Power Institute, 2005, 1(1): 6-11. | |
23 | Li L X, Yu S W, Mu H L, et al. Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies[J]. Energy, 2018, 162: 825-840. |
24 | Li L X, Mu H L, Li N, et al. Analysis of the integrated performance and redundant energy of CCHP systems under different operation strategies[J]. Energy and Buildings, 2015, 99: 231-242. |
25 | Wang J J, Sui J, Jin H G. An improved operation strategy of combined cooling heating and power system following electrical load[J]. Energy, 2015, 85: 654-666. |
26 | Mago P J, Chamra L M, Ramsay J. Micro-combined cooling, heating and power systems hybrid electric-thermal load following operation[J]. Applied Thermal Engineering, 2010, 30(8/9): 800-806. |
27 | Li G Q, Zhang R F, Jiang T, et al. Optimal dispatch strategy for integrated energy systems with CCHP and wind power[J]. Applied Energy, 2017, 192: 408-419. |
28 | Bischi A, Taccari L, Martelli E, et al. A detailed MILP optimization model for combined cooling, heat and power system operation planning[J]. Energy, 2014, 74: 12-26. |
29 | Ren H B, Gao W J. A MILP model for integrated plan and evaluation of distributed energy systems[J]. Applied Energy, 2010, 87(3): 1001-1014. |
30 | Kang L G, Yang J H, An Q S, et al. Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff[J]. Applied Energy, 2017, 194: 454-466. |
31 | Zhou Z, Liu P, Li Z, et al. Impacts of equipment off-design characteristics on the optimal design and operation of combined cooling, heating and power systems[J]. Computers & Chemical Engineering, 2013, 48: 40-47. |
32 | Zheng X Y, Wu G C, Qiu Y W, et al. A MINLP multi-objective optimization model for operational planning of a case study CCHP system in urban China[J]. Applied Energy, 2018, 210: 1126-1140. |
33 | Zheng C Y, Wu J Y, Zhai X Q. A novel operation strategy for CCHP systems based on minimum distance[J]. Applied Energy, 2014, 128: 325-335. |
34 | Kim S H, Boukouvala F. Surrogate-based optimization for mixed-integer nonlinear problems[J]. Computers & Chemical Engineering, 2020, 140: 106847. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[3] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[4] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[5] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[6] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[7] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[8] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[9] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[10] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[11] | 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488. |
[12] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[13] | 王锋, 陈钰, 裴鸿艳, 刘东东, 张静, 张立新. 1,2,4-𫫇二唑类衍生物的设计、合成及抗菌活性[J]. 化工学报, 2023, 74(3): 1390-1398. |
[14] | 宇国佳, 靳冬玉, 周智勇, 张帆, 任钟旗. 多孔液体的设计合成与应用研究进展[J]. 化工学报, 2023, 74(1): 257-275. |
[15] | 魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||