化工学报 ›› 2022, Vol. 73 ›› Issue (3): 1335-1342.DOI: 10.11949/0438-1157.20211305
收稿日期:
2021-09-07
修回日期:
2021-11-11
出版日期:
2022-03-15
发布日期:
2022-03-14
通讯作者:
郭庆华
作者简介:
闫帅(1997—),男,硕士研究生,基金资助:
Shuai YAN(),Jiabao YANG,Yan GONG,Qinghua GUO(),Guangsuo YU
Received:
2021-09-07
Revised:
2021-11-11
Online:
2022-03-15
Published:
2022-03-14
Contact:
Qinghua GUO
摘要:
基于火焰光谱诊断平台,利用由高分辨率CCD相机成像系统和光纤光谱仪组成的光谱成像系统对甲烷反扩散火焰的光谱辐射特性进行研究。获得了不同氧燃当量比和CO2稀释水平下CH4/O2同轴射流反扩散火焰的OH*、CH*二维辐射分布并进行了Abel反卷积处理。结果表明:随氧燃当量比的增加,OH*火焰逐渐中空,火焰锋面被拉伸,轴向高度和火焰面积均先增大后减小。CH*火焰核心反应区位置和形状随当量比增加变化不明显。随CO2稀释剂体积分数的增加,OH*火焰被拉伸,并由完全包络状过渡为对称包络状,火焰面积逐渐减小。CH*火焰被拉伸并靠近中央轴线,火焰面积逐渐增大。对比OH*火焰层,CH*火焰层较薄且峰值强度低。
中图分类号:
闫帅, 杨家宝, 龚岩, 郭庆华, 于广锁. CO2稀释对甲烷反扩散火焰结构的影响研究[J]. 化工学报, 2022, 73(3): 1335-1342.
Shuai YAN, Jiabao YANG, Yan GONG, Qinghua GUO, Guangsuo YU. Effects of CO2 dilution on the structure of methane inverse diffusion flame[J]. CIESC Journal, 2022, 73(3): 1335-1342.
序号 | (L·min-1) | (L·min-1) | (L·min-1) | % | U氧化剂/ (m·s-1) | λ |
---|---|---|---|---|---|---|
1 | 0.5 | 0.6 | 0 | 0 | 0.796 | 0.6 |
2 | 0.5 | 0.7 | 0 | 0 | 0.928 | 0.7 |
3 | 0.5 | 0.8 | 0 | 0 | 1.061 | 0.8 |
4 | 0.5 | 0.9 | 0 | 0 | 1.194 | 0.9 |
5 | 0.5 | 1.0 | 0 | 0 | 1.326 | 1.0 |
6 | 0.5 | 1.1 | 0 | 0 | 1.459 | 1.1 |
7 | 0.5 | 1.2 | 0 | 0 | 1.592 | 1.2 |
8 | 0.5 | 1.3 | 0 | 0 | 1.724 | 1.3 |
9 | 0.5 | 1.4 | 0 | 0 | 1.857 | 1.4 |
10 | 0.5 | 1.0 | 0.2 | 16.7 | 1.592 | 1.0 |
11 | 0.5 | 1.0 | 0.3 | 23.1 | 1.724 | 1.0 |
12 | 0.5 | 1.0 | 0.4 | 28.6 | 1.857 | 1.0 |
13 | 0.5 | 1.0 | 0.5 | 33.3 | 1.989 | 1.0 |
14 | 0.5 | 1.0 | 0.6 | 37.5 | 2.122 | 1.0 |
15 | 0.5 | 1.0 | 0.7 | 41.2 | 2.255 | 1.0 |
16 | 0.5 | 1.0 | 0.8 | 44.4 | 2.387 | 1.0 |
17 | 0.5 | 1.0 | 0.9 | 47.4 | 2.520 | 1.0 |
表1 试验工况条件
Table 1 Experimental conditions
序号 | (L·min-1) | (L·min-1) | (L·min-1) | % | U氧化剂/ (m·s-1) | λ |
---|---|---|---|---|---|---|
1 | 0.5 | 0.6 | 0 | 0 | 0.796 | 0.6 |
2 | 0.5 | 0.7 | 0 | 0 | 0.928 | 0.7 |
3 | 0.5 | 0.8 | 0 | 0 | 1.061 | 0.8 |
4 | 0.5 | 0.9 | 0 | 0 | 1.194 | 0.9 |
5 | 0.5 | 1.0 | 0 | 0 | 1.326 | 1.0 |
6 | 0.5 | 1.1 | 0 | 0 | 1.459 | 1.1 |
7 | 0.5 | 1.2 | 0 | 0 | 1.592 | 1.2 |
8 | 0.5 | 1.3 | 0 | 0 | 1.724 | 1.3 |
9 | 0.5 | 1.4 | 0 | 0 | 1.857 | 1.4 |
10 | 0.5 | 1.0 | 0.2 | 16.7 | 1.592 | 1.0 |
11 | 0.5 | 1.0 | 0.3 | 23.1 | 1.724 | 1.0 |
12 | 0.5 | 1.0 | 0.4 | 28.6 | 1.857 | 1.0 |
13 | 0.5 | 1.0 | 0.5 | 33.3 | 1.989 | 1.0 |
14 | 0.5 | 1.0 | 0.6 | 37.5 | 2.122 | 1.0 |
15 | 0.5 | 1.0 | 0.7 | 41.2 | 2.255 | 1.0 |
16 | 0.5 | 1.0 | 0.8 | 44.4 | 2.387 | 1.0 |
17 | 0.5 | 1.0 | 0.9 | 47.4 | 2.520 | 1.0 |
1 | 顾璠, 黄亚继, 刘道银. 燃烧学基础[M]. 南京: 东南大学出版社, 2019: 156-157. |
Gu F, Huang Y J, Liu D Y. Fundamental Theory of Combustion[M]. Nanjing: Southeast University Press, 2019: 156-157. | |
2 | 聂璇, 周魁斌, 吴月琼, 等. 气固射流扩散火焰形态研究[J]. 化工学报, 2021, 72(5): 2878-2886. |
Nie X, Zhou K B, Wu Y Q, et al. Study on the flame shape of gas-solid jet diffusion[J]. CIESC Journal, 2021, 72(5): 2878-2886. | |
3 | 刘洁妤, 龚岩, 吴晓翔, 等. 多喷嘴对置式气化炉内颗粒挥发分火焰可视化研究[J]. 化工学报, 2021, 72(3): 1275-1282. |
Liu J Y, Gong Y, Wu X X, et al. Visualization study on particle volatile flame opposed multi-burner impinging entrained-flow gasifier[J]. CIESC Journal, 2021, 72(3): 1275-1282. | |
4 | 安振华, 张猛, 毛润泽, 等. 钝体甲烷火焰高掺氢比吹熄机理的大涡模拟[J]. 燃烧科学与技术, 2021, 27(4): 443-450. |
An Z H, Zhang M, Mao R Z, et al. Blow-off mechanism of high hydrogen ratio bluff body methane flame by large eddy simulation[J]. Journal of Combustion Science and Technology, 2021, 27(4): 443-450. | |
5 | Mikofski M A, Williams T C, Shaddix C R, et al. Flame height measurement of laminar inverse diffusion flames[J]. Combustion and Flame, 2006, 146(1/2): 63-72. |
6 | Li X Y, Dai Z H, Guo Q H, et al. Experimental and numerical study of MILD combustion in a bench-scale natural gas partial oxidation gasifier[J]. Fuel, 2017, 193: 197-205. |
7 | Xi J F, Yuan Y, Gu Z Z, et al. Effect of CO2/N2/CH4 dilution on NO formation in laminar coflow syngas diffusion flames[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2018, 40(7): 821-829. |
8 | Gaydon A G. The Spectroscopy of Flames[M]. Dordrecht: Springer, 1974. |
9 | Li Z S, Li B, Sun Z W, et al. Turbulence and combustion interaction: high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2O in a piloted premixed jet flame[J]. Combustion and Flame, 2010, 157(6): 1087-1096. |
10 | Walsh K T, Fielding J, Smooke M D, et al. A comparison of computational and experimental lift-off heights of coflow laminar diffusion flames[J]. Proceedings of the Combustion Institute, 2005, 30(1): 357-365. |
11 | Hardalupas Y, Panoutsos C S, Taylor A M K P. Spatial resolution of a chemiluminescence sensor for local heat-release rate and equivalence ratio measurements in a model gas turbine combustor[J]. Experiments in Fluids, 2010, 49(4): 883-909. |
12 | Baumgardner M E, Harvey J. Analyzing OH*, CH*, and C2* chemiluminescence of bifurcating FREI propane-air flames in a micro flow reactor[J]. Combustion and Flame, 2020, 221: 349-351. |
13 | Ballester J, Hernández R, Sanz A, et al. Chemiluminescence monitoring in premixed flames of natural gas and its blends with hydrogen[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2983-2991. |
14 | 周莹, 白永辉, 宋旭东, 等. 自由基的化学发光特性在火焰光谱诊断的应用综述[J]. 光谱学与光谱分析, 2020, 40(11): 3358-3364. |
Zhou Y, Bai Y H, Song X D, et al. Application of chemiluminescence in spectral diagnosis: a review[J]. Spectroscopy and Spectral Analysis, 2020, 40(11): 3358-3364. | |
15 | Mahesh S, Mishra D P. Flame structure of LPG-air inverse diffusion flame in a backstep burner[J]. Fuel, 2010, 89(8): 2145-2148. |
16 | Wang Z Y, Sunderland P B, Axelbaum R L. Double blue zones in inverse and normal laminar jet diffusion flames[J]. Combustion and Flame, 2020, 211: 253-259. |
17 | Escudero F, Fuentes A, Demarco R, et al. Effects of oxygen index on soot production and temperature in an ethylene inverse diffusion flame[J]. Experimental Thermal and Fluid Science, 2016, 73: 101-108. |
18 |
Zhou Y, Xie F, Yao M, et al. Investigation on stability and chemiluminescence characterization for liftoff inverse diffusion flames[J]. Combustion Science and Technology, 2021. DOI: 10.1080/00102202.2021.1872552 .
DOI |
19 | Zhu H W, Gong Y, He L, et al. Effects of CO and H2 addition on OH* chemiluminescence characteristics in laminar rich inverse diffusion flames[J]. Fuel, 2019, 254: 115554. |
20 | Yang J B, Gong Y, Guo Q H, et al. Experimental studies of the effects of global equivalence ratio and CO2 dilution level on the OH* and CH* chemiluminescence in CH4/O2 diffusion flames[J]. Fuel, 2020, 278: 118307. |
21 | Yang J B, Gong Y, Guo Q H, et al. Dilution effects of N2 and CO2 on flame structure and reaction characteristics in CH4/O2 flames[J]. Experimental Thermal and Fluid Science, 2019, 108: 16-24. |
22 | Cho Y T, Na S J. Application of Abel inversion in real-time calculations for circularly and elliptically symmetric radiation sources[J]. Measurement Science and Technology, 2005, 16(3): 878-884. |
23 | Hardalupas Y, Selbach A. Imposed oscillations and non-premixed flames[J]. Progress in Energy and Combustion Science, 2002, 28(1): 75-104. |
24 | Karnani S, Dunn-Rankin D. Visualizing CH* chemiluminescence in sooting flames[J]. Combustion and Flame, 2013, 160(10): 2275-2278. |
25 | 张婷. 射流扩散及撞击火焰辐射光谱及火焰结构研究[D]. 上海: 华东理工大学, 2013. |
Zhang T. Investigations on emission spectrum and flame structure of jet diffusion and impinging flames[D]. Shanghai: East China University of Science and Technology, 2013. | |
26 | Lauer M, Sattelmayer T. On the adequacy of chemiluminescence as a measure for heat release in turbulent flames with mixture gradients[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(6): 061502. |
27 | Kamal M M. Two-line (CH /CO2) chemiluminescence technique for equivalence ratio mapping in turbulent stratified flames[J]. Energy, 2020, 192: 116485. |
28 | Guiberti T F, Durox D, Schuller T. Flame chemiluminescence from CO2-and N2-diluted laminar CH4/air premixed flames[J]. Combustion and Flame, 2017, 181: 110-122. |
29 | Jakob M, Hülser T, Janssen A, et al. Simultaneous high-speed visualization of soot luminosity and OH chemiluminescence of alternative-fuel combustion in a HSDI diesel engine under realistic operating conditions[J]. Combustion and Flame, 2012, 159(7): 2516-2529. |
30 | 杨家宝, 何磊, 祝慧雯, 等. N2和CO2稀释对CH4/O2扩散火焰反应区和结构特性的影响[J]. 华东理工大学学报(自然科学版), 2019, 45(6): 853-859. |
Yang J B, He L, Zhu H W, et al. Effects of N2/CO2 on the reaction zone and structure characteristics of the CH4/O2 diffusion flame[J]. Journal of East China University of Science and Technology, 2019, 45(6): 853-859. | |
31 | Miao J, Leung C W, Cheung C S, et al. Effect of H2 addition on OH distribution of LPG/air circumferential inverse diffusion flame[J]. International Journal of Hydrogen Energy, 2016, 41(22): 9653-9663. |
32 |
Li Y H, Chen C H, Ilbas M. Effect of diluent addition on combustion characteristics of methane/nitrous oxide inverse tri-coflow diffusion flames[J]. Combustion Science and Technology, 2020. DOI: 10.1080/00102202.2020.1854236 .
DOI |
33 | Chen Y, Wang J F, Zhang X L, et al. The effects of CO2 additional on flame characteristics in the CH4/N2/O2 counterflow diffusion flame[J]. Molecules, 2021, 26(10): 2905. |
34 | Shim M, Noh K, Yoon W. Flame structure of methane/oxygen shear coaxial jet with velocity ratio using high-speed imaging and OH*, CH* chemiluminescence[J]. Acta Astronautica, 2018, 147: 127-132. |
35 | 胡翀赫. 基于气流床气化的扩散及撞击火焰光谱辐射特性研究[D]. 上海:华东理工大学, 2018. |
Hu C H. Study on spectroscopic characteristics in diffusion and impinging flames based on entrained-flow gasifier[D]. Shanghai: East China University of Science and Technology, 2018. | |
36 | Xie F, Zhou Y, Song X D, et al. Investigation of OH chemiluminescence with lift-off characteristic in methane-oxygen inverse diffusion flame[J]. International Journal of Hydrogen Energy, 2021, 46(2): 1461-1472. |
37 | Kojima J, Ikeda Y, Nakajima T. Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames[J]. Combustion and Flame, 2005, 140(1/2): 34-45. |
38 | 蔡小舒, 季琨, 苏明旭, 等. 基于光谱分析的煤粉火焰复合判据和燃烧诊断研究[J]. 中国电机工程学报, 2004, 24(1): 211-215. |
Cai X S, Ji K, Su M X, et al. The study of pulverized coal combustion diagnosis and flame criterion based on the spectrum analysis[J]. Proceedings of the CSEE, 2004, 24(1): 211-215. | |
39 | Muruganandam T M, Nair S, Scarborough D, et al. Active control of lean blowout for turbine engine combustors[J]. Journal of Propulsion and Power, 2005, 21(5): 807-814. |
40 | Ko Y C, Hou S S, Lin T H. Laminar diffusion flames in a multiport burner[J]. Combustion Science and Technology, 2005, 177(8): 1463-1484. |
[1] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[2] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[3] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[4] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[5] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[6] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[7] | 李辰鑫, 潘艳秋, 何流, 牛亚宾, 俞路. 基于碳微晶结构的炭膜模型及其气体分离模拟[J]. 化工学报, 2023, 74(5): 2057-2066. |
[8] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[9] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[10] | 胡香凝, 尹渊博, 袁辰, 是赟, 刘翠伟, 胡其会, 杨文, 李玉星. 成品油在土壤中运移可视化的实验研究[J]. 化工学报, 2023, 74(4): 1827-1835. |
[11] | 胡晗, 杨亮, 李春晓, 刘道平. 天然烟浸滤液水合物法储甲烷动力学研究[J]. 化工学报, 2023, 74(3): 1313-1321. |
[12] | 吴选军, 王超, 曹子健, 蔡卫权. 数据与物理信息混合驱动的固定床吸附穿透深度学习模型[J]. 化工学报, 2023, 74(3): 1145-1160. |
[13] | 杨庆云, 李青松, 陈泽铭, 邓靖, 李玉瑛, 杨帆, 陈国元, 李国新. UV/PMS、UV/PDS、UV/SPC工艺降解尼泊金甲酯[J]. 化工学报, 2023, 74(3): 1322-1331. |
[14] | 彭晓婉, 郭笑楠, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8浆液法分离CH4/N2的双吸收-吸附塔工艺流程建模与模拟[J]. 化工学报, 2023, 74(2): 784-795. |
[15] | 周培旭, 李亚伦, 叶恭然, 庄园, 吴曦蕾, 郭智恺, 韩晓红. 有限空间内工质物性对制冷剂泄漏扩散特性的影响[J]. 化工学报, 2023, 74(2): 953-967. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||