化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1732-1742.DOI: 10.11949/0438-1157.20211570
收稿日期:
2021-11-05
修回日期:
2022-01-21
出版日期:
2022-04-05
发布日期:
2022-04-25
通讯作者:
王智化
作者简介:
张逸伟(1998—),男,硕士研究生,基金资助:
Yiwei ZHANG(),Hairong TANG,Yong HE,Yanqun ZHU,Zhihua WANG()
Received:
2021-11-05
Revised:
2022-01-21
Online:
2022-04-05
Published:
2022-04-25
Contact:
Zhihua WANG
摘要:
臭氧氧化污染物协同脱除技术利用臭氧的强氧化性,将烟气中溶解度较低的NO x 、Hg、VOCs等多种污染物氧化为高价态或易溶解的形式,并结合尾部湿法喷淋系统实现污染物的同时脱除。由于其具有温度窗口低、脱硝效率高、反应速率快及改造难度小等优点,在工业锅炉、窑炉及非电行业得到广泛应用。但是在此过程中的污染物实际转化路径,尤其是氮氧化物的输入/输出平衡,目前还未有详细的验证试验支撑。因此本文针对典型臭氧氧化脱硝过程,对污染物脱除过程中的氮氧化物输入/输出平衡及氮元素流向进行了分析试验。试验结果表明,气相输入的NO经过臭氧氧化耦合湿法喷淋后逐渐转化为液相中硝酸根和亚硝酸根离子。在不同O3/NO摩尔比下,气相氮元素的减少量均以液相中硝酸根及亚硝酸根的增加量存在,不存在其他含氮形式。同时,吸收浆液中硝酸盐及亚硝酸盐的转化率也与烟气中NO x 脱除率相匹配。在NO/SO2同时氧化条件下,调节O3/NO摩尔比,结合湿法喷淋系统可以实现NO x /SO2的协同高效脱除,同时系统满足氮元素输入/输出平衡,为臭氧氧化污染物协同脱除技术的工程应用推广提供了依据。
中图分类号:
张逸伟, 唐海荣, 何勇, 朱燕群, 王智化. 臭氧低温氧化烟气脱硝过程中的氮平衡试验研究[J]. 化工学报, 2022, 73(4): 1732-1742.
Yiwei ZHANG, Hairong TANG, Yong HE, Yanqun ZHU, Zhihua WANG. Experimental study of nitrogen balance in the process of flue gas denitration by ozone low-temperature oxidation[J]. CIESC Journal, 2022, 73(4): 1732-1742.
工况序号 | 测试工况 |
---|---|
1# | O3/NO=2,初始约250 μl/L NO,无SO2 |
2# | O3/NO=1.6,初始约250 μl/L NO,无SO2 |
3# | O3/NO=1.3,初始约250 μl/L NO,无SO2 |
4# | O3/NO=1,初始约250 μl/L NO,无SO2 |
5# | O3/NO=0.6,初始约250 μl/L NO,无SO2 |
6# | O3/NO=2,初始约250 μl/L NO,约100 μl/L SO2 |
7# | O3/NO=1.6,初始约250 μl/L NO,约100 μl/L SO2 |
8# | O3/NO=1.3,初始约250 μl/L NO,约100 μl/L SO2 |
9# | O3/NO=1,初始约250 μl/L NO,约100 μl/L SO2 |
10# | O3/NO=0.6,初始约250 μl/L NO,约100 μl/L SO2 |
表1 试验工况
Table 1 Working conditions during the test
工况序号 | 测试工况 |
---|---|
1# | O3/NO=2,初始约250 μl/L NO,无SO2 |
2# | O3/NO=1.6,初始约250 μl/L NO,无SO2 |
3# | O3/NO=1.3,初始约250 μl/L NO,无SO2 |
4# | O3/NO=1,初始约250 μl/L NO,无SO2 |
5# | O3/NO=0.6,初始约250 μl/L NO,无SO2 |
6# | O3/NO=2,初始约250 μl/L NO,约100 μl/L SO2 |
7# | O3/NO=1.6,初始约250 μl/L NO,约100 μl/L SO2 |
8# | O3/NO=1.3,初始约250 μl/L NO,约100 μl/L SO2 |
9# | O3/NO=1,初始约250 μl/L NO,约100 μl/L SO2 |
10# | O3/NO=0.6,初始约250 μl/L NO,约100 μl/L SO2 |
1 | 国家统计局. 中国统计年鉴2020 [M]. 北京:中国统计出版社, 2020: 4-5. |
National Bureau of Statistics. China Statistical Yearbook-2020[M]. Beijing: China Statistics Press, 2020: 4-5. | |
2 | Mondal M K, Chelluboyana V R. New experimental results of combined SO2 and NO removal from simulated gas stream by NaClO as low-cost absorbent[J]. Chemical Engineering Journal, 2013, 217: 48-53. |
3 | Deshwal B R, Jin D S, Lee S H, et al. Removal of NO from flue gas by aqueous chlorine-dioxide scrubbing solution in a lab-scale bubbling reactor[J]. Journal of Hazardous Materials, 2008, 150(3): 649-655. |
4 | Chu H, Chien T W, Li S Y. Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOH solutions[J]. Science of the Total Environment, 2001, 275(1/2/3): 127-135. |
5 | Hao R L, Yang S, Yuan B, et al. Simultaneous desulfurization and denitrification through an integrative process utilizing NaClO2 /NaS2O8 [J]. Fuel Processing Technology, 2017, 159: 145-152. |
6 | Zhao Y, Hao R L, Yuan B, et al. Simultaneous removal of SO2, NO and Hg0 through an integrative process utilizing a cost-effective complex oxidant[J]. Journal of Hazardous Materials, 2016, 301: 74-83. |
7 | Fang P, Cen C P, Tang Z X, et al. Simultaneous removal of SO2 and NO x by wet scrubbing using urea solution [J]. Chemical Engineering Journal, 2011, 168(1): 52-59. |
8 | Chmielewski A G. Industrial applications of electron beam flue gas treatment—from laboratory to the practice[J]. Radiation Physics and Chemistry, 2007, 76(8/9): 1480-1484. |
9 | Xie Y, Chen Y, Ma Y G, et al. Investigation of simultaneous adsorption of SO2 and NO on γ-alumina at low temperature using DRIFTS[J]. Journal of Hazardous Materials, 2011, 195: 223-229. |
10 | Wilde J D, Marin G B. Investigation of simultaneous adsorption of SO2 and NO x on Na-γ-alumina with transient techniques[J]. Catalysis Today, 2000, 62(4): 319-328. |
11 | 刘子红. 改性活性炭纤维协同脱除燃煤烟气中多种污染物的实验及放大研究[D]. 武汉: 华中科技大学, 2014. |
Liu Z H. Joint removal research and scale-up experiment of multiple pollutants in coal fired flue gas based on modified activated carbon fiber[D]. Wuhan: Huazhong University of Science and Technology, 2014. | |
12 | 王智化. 燃煤多种污染物一体化协同脱除机理及反应射流直接数值模拟DNS的研究[D]. 杭州: 浙江大学, 2005. |
Wang Z H. Mechanism study on multi-pollution control simultaneously during coal combustion and direct numerical simulation of reaction jets flow[D]. Hangzhou: Zhejiang University, 2005. | |
13 | Lin F W, Wang Z H, Zhang Z M, et al. Flue gas treatment with ozone oxidation: an overview on NO x, organic pollutants, and mercury[J]. Chemical Engineering Journal, 2020, 382: 123030. |
14 | 黄元凯, 朱燕群, 邵嘉铭, 等. 臭氧脱硝过程中硝酸盐气溶胶的生成机理及控制[J]. 洁净煤技术, 2020, 26(5): 77-83. |
Huang Y K, Zhu Y Q, Shao J M, et al. Formation mechanism and control of nitrate aerosol during ozone deNO x process[J]. Clean Coal Technology, 2020, 26(5): 77-83. | |
15 | 赵雪, 程茜, 侯俊先. 脱硫脱硝行业2017年发展综述[J]. 中国环保产业, 2018 (7): 10-24. |
Zhao X, Cheng X, Hou J X. Development report on desulfurization and denitration industry in 2017[J]. China Environmental Protection Industry, 2018 (7): 10-24. | |
16 | 宫家宏. 电站煤粉炉氮氧化物控制技术[J]. 电力设备管理, 2018(10): 84-88, 91. |
Gong J H. Nitrogen oxide control technology of coal powder furnace in power plant[J]. Electric Power Equipment Management, 2018(10): 84-88, 91. | |
17 | 陈玉龙, 王锐. 关于锅炉脱硝改造后产生堵灰及腐蚀问题探讨[J]. 锅炉制造, 2018(6): 40-41. |
Chen Y L, Wang R. Discussion on blockage and corrosion of boiler after denitrification[J]. Boiler Manufacturing, 2018(6): 40-41. | |
18 | Østberg M, Dam-Johansen K. Empirical modeling of the selective non-catalytic reduction of NO: comparison with large-scale experiments and detailed kinetic modeling[J]. Chemical Engineering Science, 1994, 49(12): 1897-1904. |
19 | 王小娥. 选择性非催化还原烟气脱硝技术在CFB锅炉及煤粉炉上的应用比较[D]. 上海: 上海交通大学, 2014. |
Wang X E. The comparison of engineering application of SNCR technology for CFB boilers and PC boilers[D]. Shanghai: Shanghai Jiao Tong University, 2014. | |
20 | Wang Z H, Zhou J H, Zhu Y Q, et al. Simultaneous removal of NO x, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: experimental results[J]. Fuel Processing Technology, 2007, 88(8): 817-823. |
21 | Zheng C H, Xu C R, Zhang Y X, et al. Nitrogen oxide absorption and nitrite/nitrate formation in limestone slurry for WFGD system[J]. Applied Energy, 2014, 129: 187-194. |
22 | 林法伟. 活性分子臭氧耦合催化深度脱除烟气中氮氧化物的基础特性研究[D]. 杭州: 浙江大学, 2018. |
Lin F W. Basic characteristics study on NO x deep removal in the flue gas by active molecules (ozone)-catalytic method[D]. Hangzhou: Zhejiang University, 2018. | |
23 | 张明慧. 烟气中超高浓度氮氧化物的前置氧化脱除机理研究[D]. 杭州: 浙江大学, 2015. |
Zhang M H. Experimental and mechanism study on the removal of high concentration nitrogen oxides in the flue gas by pre-oxidization[D]. Hangzhou: Zhejiang University, 2015. | |
24 | 杨业. 臭氧深度氧化烟气结合湿法喷淋脱除氮氧化物试验与机理研究[D]. 杭州: 浙江大学, 2017. |
Yang Y. Experimental and mechanism study on the removal of nitrogen oxides in flue gas with ozone deeply oxidation treatment[D]. Hangzhou: Zhejiang University, 2017. | |
25 | 王智化, 周俊虎, 魏林生, 等. 用臭氧氧化技术同时脱除锅炉烟气中NO x 及SO2的试验研究[J]. 中国电机工程学报, 2007, 27(11): 1-5. |
Wang Z H, Zhou J H, Wei L S, et al. Experimental research for the simultaneous removal of NO x and SO2 in flue gas by O3 [J]. Proceedings of the CSEE, 2007, 27(11): 1-5. | |
26 | 张利波, 刘佩希, 张椰, 等. 220 t/h煤粉锅炉臭氧氧化NO x 超低排放试验研究[J]. 洁净煤技术, 2019, 25(3): 105-109. |
Zhang L B, Liu P X, Zhang Y, et al. Experimental study on ultra-low emission of nitrogen oxide using ozone oxidation in 220 t /h coal-fired boiler[J]. Clean Coal Technology, 2019, 25(3): 105-109. | |
27 | Shao J M, Xu C Q, Wang Z H, et al. NO x reduction in a 130 t/h biomass-fired circulating fluid bed boiler using coupled ozonation and wet absorption technology[J]. Industrial & Engineering Chemistry Research, 2019, 58(39): 18134-18140. |
28 | 马强. 烟气中多种污染物超低排放的活性分子氧化及一体化脱除机理研究[D]. 杭州: 浙江大学, 2016. |
Ma Q. Study on active molecule oxidation and removal mechanism of ultra-low emissions of multiple flue gas pollutants[D]. Hangzhou: Zhejiang University, 2016. | |
29 | 朱燕群, 杨业, 黄建鹏, 等. 橡胶厂60000m3/h炭黑干燥炉烟气臭氧脱硝试验研究[J]. 浙江大学学报(工学版), 2016, 50(10): 1865-1870. |
Zhu Y Q, Yang Y, Huang J P, et al. Removal of NO x by ozone oxidation from flue gas of 60000m3/h carbon black drying furnace of rubber plant[J]. Journal of Zhejiang University (Engineering Science), 2016, 50(10): 1865-1870. | |
30 | 张建平, 万凯迪, 王荣涛, 等. 生物质循环流化床锅炉臭氧脱硝试验研究[J]. 环境工程技术学报,2019, 9(1): 8-13. |
Zhang J P, Wan K D, Wang R T, et al. Experimental study on ozone denitration of a biomass circulating fluidized bed boiler[J]. Journal of Environmental Engineering Technology, 2019, 9(1): 8-13. | |
31 | 赵中华, 邱祖民. 桃江流域农业区氮平衡及时空差异性[J]. 水电能源科学, 2012, 30(5): 83-86. |
Zhao Z H, Qiu Z M. Nitrogen balance and its space-time difference of agricultural region in Tao River Basin [J]. Water Resources and Power, 2012, 30(5): 83-86. | |
32 | 张虎, 佟会玲, 王晋元, 等. 用KMnO4调质钙基吸收剂从燃煤烟气同时脱硫脱硝[J]. 化工学报, 2007, 58(7): 1810-1815. |
Zhang H, Tong H L, Wang J Y, et al. Simultaneous removal of SO2 and NO by using calcium absorbent with KMnO4 as additive[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(7): 1810-1815. | |
33 | 邵嘉铭. 基于锰系催化剂催化脱除烟气中NO x 和VOCs的试验与机理研究[D]. 杭州: 浙江大学, 2020. |
Shao J M. Experimental and mechanism investigation on catalytic removal of NO x and VOCs over Mn-based catalysts[D]. Hangzhou: Zhejiang University, 2020. | |
34 | 刘毅. 燃煤烟气中SO3气相生成的实验与反应动力学研究[J]. 锅炉技术, 2019, 50(6): 74-77. |
Liu Y. Experimental and reaction kinetics studies of SO3 homogeneous formation in coal-fired flue gas[J]. Boiler Technology, 2019, 50(6): 74-77. | |
35 | 刘英华, 刘启贞, 徐建林. 燃煤电厂烟气脱硫设施脱硫效率计算方法的探讨[J]. 能源环境保护, 2008, 22(6): 48-51. |
Liu Y H, Liu Q Z, Xu J L. Discussion on the calculation methods of the efficiency of FGD[J]. Energy Environmental Protection, 2008, 22(6): 48-51. | |
36 | 张瑞, 张佳, 郭少鹏, 等. 臭氧氧化同时脱除烟气中NO和SO2的研究[J]. 化学世界, 2015, 56(3): 158-161, 165. |
Zhang R, Zhang J, Guo S P, et al. Study on simultaneous removal of NO and SO2 from flue gas by ozone oxidation[J]. Chemical World, 2015, 56(3): 158-161, 165. | |
37 | 文亮. 山东地区灰霾期间硝酸盐生成机制研究[D]. 济南: 山东大学, 2015. |
Wen L. Formation mechanism of particulate nitrate during haze period in Shandong[D]. Jinan: Shandong University, 2015. | |
38 | 张玉华. 燃煤烟气SCR脱硝对细颗粒物排放特性影响的试验研究[D]. 南京: 东南大学, 2015. |
Zhang Y H. Investigation on the effects of SCR on emission characteristics of PM2.5 from coal-fired flue gas[D]. Nanjing: Southeast University, 2015. |
[1] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[2] | 杨百玉, 寇悦, 姜峻韬, 詹亚力, 王庆宏, 陈春茂. 炼化碱渣湿式氧化预处理过程DOM的化学转化特征[J]. 化工学报, 2023, 74(9): 3912-3920. |
[3] | 陈杰, 林永胜, 肖恺, 杨臣, 邱挺. 胆碱基碱性离子液体催化合成仲丁醇性能研究[J]. 化工学报, 2023, 74(9): 3716-3730. |
[4] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[5] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[6] | 吕龙义, 及文博, 韩沐达, 李伟光, 高文芳, 刘晓阳, 孙丽, 王鹏飞, 任芝军, 张光明. 铁基导电材料强化厌氧去除卤代有机污染物:研究进展及未来展望[J]. 化工学报, 2023, 74(8): 3193-3202. |
[7] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[8] | 陈吉, 洪泽, 雷昭, 凌强, 赵志刚, 彭陈辉, 崔平. 基于分子动力学的焦炭溶损反应及其机理研究[J]. 化工学报, 2023, 74(7): 2935-2946. |
[9] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[10] | 张谭, 刘光, 李晋平, 孙予罕. Ru基氮还原电催化剂性能调控策略[J]. 化工学报, 2023, 74(6): 2264-2280. |
[11] | 杨峥豪, 何臻, 常玉龙, 靳紫恒, 江霞. 生物质快速热解下行式流化床反应器研究进展[J]. 化工学报, 2023, 74(6): 2249-2263. |
[12] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
[13] | 朱风, 陈凯琳, 黄小凤, 鲍银珠, 李文斌, 刘嘉鑫, 吴玮强, 高王伟. KOH改性电石渣脱除羰基硫的性能研究[J]. 化工学报, 2023, 74(6): 2668-2679. |
[14] | 朱理想, 罗默也, 张晓东, 龙涛, 余冉. 醌指纹法指示三氯乙烯污染土功能微生物活性应用研究[J]. 化工学报, 2023, 74(6): 2647-2654. |
[15] | 李晨曦, 刘永峰, 张璐, 刘海峰, 宋金瓯, 何旭. O2/CO2氛围下正庚烷的燃烧机理研究[J]. 化工学报, 2023, 74(5): 2157-2169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||