4 |
Yang D C, Pan Y H, Huang Q X, et al. Study on catalytic reforming of tar at low temperature to produce hydrogen-rich gas by tire pyrolysis char[J]. CIESC Journal, 2020, 71(2): 642-650.
|
5 |
Sun Y J, Jiang J C, Kantarelis E, et al. Development of a bimetallic dolomite based tar cracking catalyst[J]. Catalysis Communications, 2012, 20: 36-40.
|
6 |
Klinghoffer N B, Castaldi M J, Nzihou A. Catalyst properties and catalytic performance of char from biomass gasification[J]. Industrial & Engineering Chemistry Research, 2012, 51(40): 13113-13122.
|
7 |
Han J, Kim H. The reduction and control technology of tar during biomass gasification/pyrolysis: an overview[J]. Renewable and Sustainable Energy Reviews, 2008, 12(2): 397-416.
|
8 |
Zhang S H, Shen Y, Wang L D, et al. Phase change solvents for post-combustion CO2 capure: principle, advances, and challenges[J]. Applied Energy, 2019, 239: 876-897.
|
9 |
Feng J J, Loussala H M, Han S, et al. Recent advances of ionic liquids in sample preparation[J]. Trac-Trends in Analytical Chemistry, 2020, 125: 115833.
|
10 |
Castillo, A S R, Biard P F, Guiheneuf, S, et al. Assessment of VOC absorption in hydrophobic ionic liquids: measurement of partition and diffusion coefficients and simulation of a packed column[J]. Chemical Engineering Journal, 2019, 360: 1416-1426.
|
11 |
Quijano G, Couvert A, Amrane A, et al. Absorption and biodegradation of hydrophobic volatile organic compounds in ionic liquids[J]. Water, Air, & Soil Pollution, 2013, 224(5): 1-9.
|
12 |
Zhang W L, Luo J P, Sun T F, et al. The absorption performance of ionic liquids–PEG200 complex absorbent for VOCs[J]. Energies, 2021, 14(12): 3592.
|
13 |
Salar-García M J, Ortiz-Martínez V M, Hernández-Fernández F J, et al. Ionic liquid technology to recover volatile organic compounds (VOCs)[J]. Journal of Hazardous Materials, 2017, 321: 484-499.
|
14 |
Sarwono A, Man Z, Idris A, et al. Alkyd paint removal: ionic liquid vs volatile organic compound (VOC)[J]. Progress in Organic Coatings, 2018, 122: 79-87.
|
15 |
Bedia J, Ruiz E, de Riva J, et al. Optimized ionic liquids for toluene absorption[J]. AIChE Journal, 2013, 59(5): 1648-1656.
|
16 |
李长浩, 巫先坤, 王志祥, 等. 咪唑类离子液体吸收低压苯蒸汽的热力学研究[J]. 南京大学学报(自然科学), 2015, 51(4): 700-706.
|
|
Li C H, Wu X K, Wang Z X, et al. Thermodynamic study on absorption of low-pressure benzene vapor in imidazolium-based ionic liquids[J]. Journal of Nanjing University (Natural Sciences), 2015, 51(4): 700-706.
|
17 |
Wang W L, Ma X L, Grimes S, et al. Study on the absorbability, regeneration characteristics and thermal stability of ionic liquids for VOCs removal[J]. Chemical Engineering Journal, 2017, 328: 353-359.
|
1 |
Sansaniwal S K, Pal K, Rosen M A, et al. Recent advances in the development of biomass gasification technology: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 363-384.
|
2 |
吴娟, 陈海军, 朱跃钊, 等. 基于回收理念的生物质燃气焦油脱除研究进展[J]. 化工进展, 2013, 32(9): 2099-2105, 2111.
|
18 |
Klamt A, Eckert F. COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids[J]. Fluid Phase Equilibria, 2000, 172(1): 43-72.
|
19 |
Zhang X S, Pan J W, Wang L, et al. COSMO-based solvent selection and Aspen Plus process simulation for tar absorptive removal[J]. Applied Energy, 2019, 251: 113314.
|
2 |
Wu J, Chen H J, Zhu Y Z, et al. Biomass producer gas tar removal technology based on recovery idea[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 2099-2105, 2111.
|
3 |
张玉明, 纪德馨, 朱翰文, 等. 微型流化床中萘裂解生成小分子气体的反应动力学研究[J]. 化工学报, 2021, 72(5): 2604-2615.
|
|
Zhang Y M, Ji D X, Zhu H W, et al. Reaction kinetics of naphthalene cracking into small molecule gas in a micro fluidized bed[J]. CIESC Journal, 2021, 72(5): 2604-2615.
|
4 |
杨殿才, 潘宇涵, 黄群星, 等. 废轮胎热解炭低温催化焦油重整制备富氢气体的研究[J]. 化工学报, 2020, 71(2): 642-650.
|
20 |
Krummen M, Gruber D, Gmehling J. Measurement of activity coefficients at infinite dilution in solvent mixtures using the dilutor technique[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 2114-2123.
|
21 |
Heintz A, Kulikov D V, Verevkin S P. Thermodynamic properties of mixtures containing ionic liquids. 1. Activity coefficients at infinite dilution of alkanes, alkenes, and alkylbenzenes in 4-methyl-n-butylpyridinium tetrafluoroborate using gas–liquid chromatography[J]. Journal of Chemical & Engineering Data, 2001, 46(6): 1526-1529.
|
22 |
Kato R, Gmehling J. Systems with ionic liquids: measurement of VLE and γ ∞ data and prediction of their thermodynamic behavior using original UNIFAC, mod. UNIFAC(Do) and COSMO-RS(Ol)[J]. The Journal of Chemical Thermodynamics, 2005, 37(6): 603-619.
|
23 |
Foco G M, Bottini S B, Quezada N, et al. Activity coefficients at infinite dilution in 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids[J]. Journal of Chemical & Engineering Data, 2006, 51(3): 1088-1091.
|
24 |
Letcher T M, Soko B, Ramjugernath D, et al. Activity coefficients at infinite dilution of organic solutes in 1-hexyl-3-methylimidazolium hexafluorophosphate from gas-liquid chromatography[J]. Journal of Chemical & Engineering Data, 2003, 48(3): 708-711.
|
25 |
张锁江, 张香平, 聂毅, 等. 绿色过程系统工程[J]. 化工学报, 2016, 67(1): 41-53.
|
|
Zhang S J, Zhang X P, Nie Y, et al. Green process system engineering[J]. CIESC Journal, 2016, 67(1): 41-53.
|
26 |
Ma X B, Wu M Y, Liu S, et al. Concentration control of volatile organic compounds by ionic liquid absorption and desorption[J]. Chines Journal of Chemical Engineering, 2019, 27(10): 2383-2389.
|
27 |
Yu G Q, Mu M L, Li J, et al. Imidazolium-based ionic liquids introduced into π-electron donors: highly efficient toluene capture[J]. ACS Sustainable Chemistry & Engineering, 2020, 8: 9058-9069.
|
28 |
Yan X R, Anguille S, Bendahan M, et al. Toluene remocal from gas streams by an ionic liquid membrane: experiment and modeling[J]. Chemical Engineering Journal, 2021, 404: 127109.
|
29 |
Yu G Q, Jiang Y F, Cheng jun, et al. Structural effect on the vapor-liquid equilibrium of toluene-ionic liquid systems[J]. Chemical Engineering Science, 2019, 198: 1-15.
|
30 |
Zhang C L, Wu J, Wang R X, et al. Study of the toluene absorption capacity and mechanism of ionic liquids using COSMO-RS prediction and experimental verification[J]. Green Enerdy & Environment, 2020, 6(3): 339-349.
|
31 |
Bairagya P, Kundu D, Banerjee T. Simplified COSMO-SAC-based phase equilibria predictions for extractive distillation of toluene-heptane mixtures using ionic liquids[J]. Asia-Pacific Journal of Chemical Engineering, 2020, 15(6): 2513-2534.
|
32 |
Ma X L, Wang W L, Sun C G, et al. Comprehensive evaluation of ionic liquid [Bmim][PF6] for absorbing toluene and acetone[J]. Environmental Pollution, 2021, 285: 117675.
|
33 |
曹领帝, 曾少娟, 张香平, 等. 离子液体吸收分离硫化氢进展[J]. 化工学报, 2015, 66(S1): 1-9.
|
|
Cao L D, Zeng S J, Zhang X P, et al. Progress on hydrogen sulfide removal using ionic liquids[J]. CIESC Journal, 2015, 66(S1): 1-9.
|
34 |
Lee K H, You S H, Park S J. The selectivity of imidazolium-based ionic liquids with different anions to BTX aromatics in hexane at 298.15 K and atmospheric pressure[J]. Korean Journal of Chemical Engineering, 2016, 33(10): 2982-2989.
|
35 |
王斌琦, 张香平, 尚大伟, 等. [Bmim][PF6]高效吸收二氯甲烷及流程模拟[J]. 过程工程学报, 2018, 18(1): 82-87.
|
|
Wang B Q, Zhang X P, Shang D W, et al. Efficient recovery of dichloromethane by [Bmim][PF6] and process simulation[J]. The Chinese Journal of Process Engineering, 2018, 18(1): 82-87.
|
36 |
张文林, 闫佳伟, 孙腾飞, 等. 基于COSMO-SAC模型的分子筛选方法用于咪唑类离子液体吸收甲苯蒸气[J]. 化工学报, 2018, 69(5): 1829-1839.
|
|
Zhang W L, Yan J W, Sun T F, et al. COSMO-SAC molecular screening method to analyze imidazole ionic liquids for toluene vapor absorption[J]. CIESC Journal, 2018, 69(5): 1829-1839.
|
37 |
Chen J Y, Jiang H X, Liu J L, et al. Thermodynamics and activity coefficients at infinite dilution for organic compounds and water in the ionic liquid 1-butyl-3-methylimidazolium perchlorate[J]. The Journal of Chemical Thermodynamics, 2017, 115: 12-18.
|
38 |
Chen J Y, Kang R X, He Z Z, et al. Separation of binary mixtures based on gamma infinity data using [OMMIM][NTf2] ionic liquid and modelling of thermodynamic functions[J]. The Journal of Chemical Thermodynamics, 2018, 119: 26-33.
|
39 |
He Z Z, Zhai J Y, Mu H, et al. Thermodynamics and selectivity of separation based on activity coefficients at infinite dilution of various solutes in ionic liquid [HMMIM][BF4][J]. The Journal of Chemical Thermodynamics, 2018, 125: 142-148.
|
40 |
He Z Z, Li R Q, Sun A L, et al. Experimental and theoretical study on infinite dilution activity coefficients of various solutes in ionic liquid 1-propyl-2, 3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide[J]. The Journal of Chemical Thermodynamics, 2020, 140: 105894.
|
41 |
He Z Z, Zhang M, Ge M L, et al. Separation of binary mixtures based on gamma infinity data using [OMMIM][BF4] ionic liquid and modelling of thermodynamic functions[J]. The Journal of Chemical Thermodynamics, 2019, 129: 22-29.
|
42 |
Han C, Yu G R, Wen L, et al. Data and QSPR study for viscosity of imidazolium-based ionic liquids[J]. Fluid Phase Equilibria, 2011, 300(1/2): 95-104.
|