化工学报 ›› 2022, Vol. 73 ›› Issue (5): 2149-2157.DOI: 10.11949/0438-1157.20211640
收稿日期:
2021-11-17
修回日期:
2022-02-16
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
李先宁
作者简介:
张红锐(1995—),男,硕士研究生,基金资助:
Hongrui ZHANG(),Tian ZHANG,Xizi LONG,Xianning LI()
Received:
2021-11-17
Revised:
2022-02-16
Online:
2022-05-05
Published:
2022-05-24
Contact:
Xianning LI
摘要:
工业废水中重金属与有机络合剂形成的重金属络合物是常规水处理方法难以有效去除的污染物之一。光催化氧化是降解水体中重金属络合物的有效方法,但纯TiO2催化光生电子-空穴对的较高复合效率限制了该技术在降解重金属络合物方面的应用。微生物燃料电池(microbial fuel cell, MFC)可以通过对光催化氧化单元施加电势提升光生电子与空穴分离率的同时有效降低复合效率,最终表现为高效的破络合反应。本文将MFC与光催化氧化进行耦合,在提高Cu-EDTA破络合效率的同时去除Cu2+。结果表明单MFC、串联MFC与并联MFC三种耦合方式均能提高光催化单元对Cu-EDTA的去除率,去除率分别为52.6%、73.57%和61.54%;对Cu2+的去除效果分别为18.09%、36.87%和21.09%。说明串联MFC耦合方式可以更大程度发挥光催化单元的效率。
中图分类号:
张红锐, 张田, 隆曦孜, 李先宁. 光催化与微生物燃料电池耦合对Cu-EDTA的降解特性[J]. 化工学报, 2022, 73(5): 2149-2157.
Hongrui ZHANG, Tian ZHANG, Xizi LONG, Xianning LI. Degradation characteristics of Cu-EDTA by coupling of photocatalysis and microbial fuel cell[J]. CIESC Journal, 2022, 73(5): 2149-2157.
图4 MFC装置电极电势及PEC两端电压(a);耦合系统电流(b);不同运行条件下系统对Cu-EDTA的去除效果(c)
Fig.4 The electrode potential of the MFC device and the voltage across the PEC (a); Coupling system current (b); Removal effect of the system on Cu-EDTA under different operating conditions (c)
图5 单MFC电压及串联MFC输出电压(a);PEC单元电压及耦合系统电流变化(b);串联MFC与PEC耦合系统对Cu-EDTA的去除效果(c)
Fig.5 Single MFC voltage and series MFC output voltage (a); PEC unit voltage and coupling system current change (b); Cu-EDTA removal effect of series MFC and PEC coupling system (c)
图6 单MFC电压及并联MFC输出电压(a);PEC单元电压及耦合系统电流变化(b);并联MFC与PEC耦合系统对Cu-EDTA的去除效果(c)
Fig.6 Single MFC voltage and parallel MFC output voltage (a); PEC unit voltage and coupling system current change (b); Parallel MFC and PEC coupling system to remove Cu-EDTA (c)
图7 不同耦合方式系统电流变化(a);不同耦合方式系统对Cu-EDTA的去除效果(b);不同耦合方式对Cu离子的去除效果(c)
Fig.7 Current changes in different coupling modes (a); The removal effect of different coupling modes on Cu-EDTA (b);The removal effect of different coupling modes on Cu ions (c)
1 | 管一泽, 罗安飞, 林安辉. 含重金属电镀废水的主要处理方法[J]. 中外企业家, 2020(8): 230. |
Guan Y Z, Luo A F, Lin A H. Main treatment methods of electroplating wastewater containing heavy metals [J]. Chinese & Foreign Entrepreneurs, 2020(8): 230. | |
2 | 汤雨林, 游少鸿, 兰华春, 等. 氧掺杂g-C3N4光催化降解Cu-EDTA络合物的反应机理研究[J]. 环境科学学报, 2018, 38(10): 3973-3978. |
Tang Y L, You S H, Lan H C, et al. Mechanism study of the photocatlytic decomplexation of Cu-EDTA over oxygen doped g-C3N4 [J]. Acta Scientiae Circumstantiae, 2018, 38(10): 3973-3978. | |
3 | Wang Z, Li J, Song W, et al. Decomplexation of electroplating wastewater by ozone-based advanced oxidation process[J]. Water Science and Technology, 2019, 79(3): 589-596. |
4 | Santoro C, Arbizzani C, Erable B, et al. Microbial fuel cells: from fundamentals to applications. A review[J]. Journal of Power Sources, 2017, 356: 225-244. |
5 | Tursun H, Liu R, Li J, et al. Carbon material optimized biocathode for improving microbial fuel cell performance[J]. Frontiers in Microbiology, 2016, 7: 6. |
6 | Sun M, Zhai L F, Li W W, et al. Harvest and utilization of chemical energy in wastes by microbial fuel cells[J]. Chemical Society Reviews, 2016, 45(10): 2847-2870. |
7 | Mateo S, Cantone A, Cañizares P, et al. On the staking of miniaturized air-breathing microbial fuel cells[J]. Applied Energy, 2018, 232: 1-8. |
8 | Jafary T, Rahimnejad M, Ghoreyshi A A, et al. Assessment of bioelectricity production in microbial fuel cells through series and parallel connections[J]. Energy Conversion and Management, 2013, 75: 256-262. |
9 | Feng H J, Liang Y X, Guo K, et al. TiO2 nanotube arrays modified titanium: a stable, scalable, and cost-effective bioanode for microbial fuel cells[J]. Environmental Science & Technology Letters, 2016, 3(12): 420-424. |
10 | Du J Q, Zhang B G, Li J X, et al. Decontamination of heavy metal complexes by advanced oxidation processes: a review[J]. Chinese Chemical Letters, 2020, 31(10): 2575-2582. |
11 | Hou Y, Li X Y, Zhao Q D, et al. Role of hydroxyl radicals and mechanism of Escherichia coli inactivation on Ag/AgBr/TiO2 nanotube array electrode under visible light irradiation[J]. Environmental Science & Technology, 2012, 46(7): 4042-4050. |
12 | Nakata K, Fujishima A. TiO2 photocatalysis: design and applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2012, 13(3): 169-189. |
13 | 朱遂一, 霍明昕, 张蕾蕾, 等. 氟掺杂纳米二氧化钛制备及其光催化性能研究进展[J]. 科技导报, 2010, 28(6): 112-115. |
Zhu S Y, Huo M X, Zhang L L, et al. Preparation and photocatalytic properties of nanometer titania loaded with fluorine: a review[J]. Science & Technology Review, 2010, 28(6): 112-115. | |
14 | You H, Yao J, Sun L X, et al.Preparation of TiO2-activated carbon complex membranes and their photoelectrocatalytic activity[J].Journal of Harbin Institute of Technology, 2003, 10(1): 104-107 |
15 | 张乐观. 组合光催化技术在水处理中的应用[J]. 化工进展, 2006, 25(9): 1036-1039, 1048. |
Zhang L G. Progress of combination photocatalytic oxidation in wastewater treatment[J]. Chemical Industry and Engineering Progress, 2006, 25(9): 1036-1039, 1048. | |
16 | 李荐, 罗佳, 彭振文, 等. 不同阳极氧化条件下TiO2纳米管阵列的制备及表征[J]. 无机材料学报, 2010, 25(5): 490-494. |
Li J, Luo J, Peng Z W, et al. Preparation and characterization of TiO2 nanotube arrays by anodic oxidation method[J]. Journal of Inorganic Materials, 2010, 25(5): 490-494. | |
17 | Long X Z, Pan Q R, Wang C Q, et al. Microbial fuel cell-photoelectrocatalytic cell combined system for the removal of azo dye wastewater[J]. Bioresource Technology, 2017, 244: 182-191. |
18 | Long X Z, Wang H, Wang C Q, et al. Enhancement of azo dye degradation and power generation in a photoelectrocatalytic microbial fuel cell by simple cathodic reduction on titania nanotube arrays electrode[J]. Journal of Power Sources, 2019, 415: 145-153. |
19 | Heng W X, Zhang W, Zhang Q H, et al. Photoelectrocatalytic microfluidic reactors utilizing hierarchical TiO2 nanotubes for determination of chemical oxygen demand[J]. RSC Advances, 2016, 6(55): 49824-49830. |
20 | Huang C H, Wang I K, Lin Y M, et al. Visible light photocatalytic degradation of nitric oxides on PtO x -modified TiO2 via sol-gel and impregnation method[J]. Journal of Molecular Catalysis A: Chemical, 2010, 316(1/2): 163-170. |
21 | Kazazis D, Guha S, Bojarczuk N A, et al. Substrate Fermi level effects in photocatalysis on oxides: properties of ultrathin TiO2/Si films[J]. Applied Physics Letters, 2009, 95(6): 064103. |
22 | Mora-Seró I, Bisquert J. Fermi level of surface states in TiO2 nanoparticles[J]. Nano Letters, 2003, 3(7): 945-949. |
23 | Subramanian V, Wolf E E, Kamat P V. Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration[J]. Journal of the American Chemical Society, 2004, 126(15): 4943-4950. |
24 | She X J, Xu H, Li L, et al. Steering charge transfer for boosting photocatalytic H2 evolution: integration of two-dimensional semiconductor superiorities and noble-metal-free Schottky junction effect[J]. Applied Catalysis B: Environmental, 2019, 245: 477-485. |
25 | Liang Z, Yan C F, Rtimi S, et al. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: recent advances and outlook[J]. Applied Catalysis B: Environmental, 2019, 241: 256-269. |
26 | Zhao X, Guo L B, Zhang B F, et al. Photoelectrocatalytic oxidation of CuII-EDTA at the TiO2 electrode and simultaneous recovery of CuII by electrodeposition[J]. Environmental Science & Technology, 2013, 47(9): 4480-4488. |
27 | 杨桂蓉, 魏连雨, 李静, 等. Co-BiVO4薄膜电极光电处理Pb/Cu-EDTA研究[J]. 环境科学学报, 2014, 34(4): 914-919. |
Yang G R, Wei L Y, Li J, et al. Photoelectrocatalytic treatment of Pb/Cu-EDTA at Co-BiVO4 film electrode[J]. Acta Scientiae Circumstantiae, 2014, 34(4): 914-919. | |
28 | Shao H X, Wang Y B, Zeng H B, et al. Enhanced photoelectrocatalytic degradation of bisphenol a by BiVO4 photoanode coupling with peroxymonosulfate[J]. Journal of Hazardous Materials, 2020, 394: 121105. |
29 | 陈次平, 任新民, 陆道惠, 等. 乙酸钠、草酸钠、酒石酸钾在三氧化钨-水体系中光生自由基的研究[J]. 感光科学与光化学, 1991, 9(4): 299-303. |
Chen C P, Ren X M, Lu D H, et al. Esr study on photogenerated radicals in aqueous dispersions of tungsten oxide containing sodium acetate, sodium oxalate and potassium tartrate[J]. Photographic Science and Photochemistry, 1991, 9(4): 299-303. | |
30 | Hopanna M, Kelly L, Blaney L. Photochemistry of the organoselenium compound ebselen: direct photolysis and reaction with active intermediates of conventional reactive species sensitizers and quenchers[J]. Environmental Science & Technology, 2020, 54(18): 11271-11281. |
[1] | 程业品, 胡达清, 徐奕莎, 刘华彦, 卢晗锋, 崔国凯. 离子液体基低共熔溶剂在转化CO2中的应用[J]. 化工学报, 2023, 74(9): 3640-3653. |
[2] | 李锦潼, 邱顺, 孙文寿. 煤浆法烟气脱硫中草酸和紫外线强化煤砷浸出过程[J]. 化工学报, 2023, 74(8): 3522-3532. |
[3] | 何晓崐, 刘锐, 薛园, 左然. MOCVD生长AlN单晶薄膜的气相和表面化学反应综述[J]. 化工学报, 2023, 74(7): 2800-2813. |
[4] | 张兰河, 赖青燚, 王铁铮, 关潇卓, 张明爽, 程欣, 徐小惠, 贾艳萍. H2O2对SBR脱氮效率和污泥性能的影响[J]. 化工学报, 2023, 74(5): 2186-2196. |
[5] | 李瑞康, 何盈盈, 卢维鹏, 王园园, 丁皓东, 骆勇名. 电化学强化钴基阴极活化过一硫酸盐的研究[J]. 化工学报, 2023, 74(5): 2207-2216. |
[6] | 杨庆云, 李青松, 陈泽铭, 邓靖, 李玉瑛, 杨帆, 陈国元, 李国新. UV/PMS、UV/PDS、UV/SPC工艺降解尼泊金甲酯[J]. 化工学报, 2023, 74(3): 1322-1331. |
[7] | 章承浩, 罗京, 张吉松. 微反应器内基于氮氧自由基催化剂连续氧气/空气氧化反应的研究进展[J]. 化工学报, 2023, 74(2): 511-524. |
[8] | 李雨萧, 王青月, Ho Lim Khak, 李晓辉, Erlita Mastan, 彭博, 王文俊. 自由基聚合反应动力学常数测定技术[J]. 化工学报, 2023, 74(2): 559-570. |
[9] | 曲国娟, 江涛, 刘涛, 马骧. 超分子策略调控金纳米团簇的发光行为[J]. 化工学报, 2023, 74(1): 397-407. |
[10] | 邓靖, 杨庆云, 陈民杰, 李青松, 杨帆, 陈国元, 李国新. UV-LED/NaClO工艺降解尼泊金甲酯:不同活性物种的作用[J]. 化工学报, 2022, 73(9): 4113-4121. |
[11] | 鞠小兵, 李雪纯, 孙芳. 二硫代水杨酸衍生物对光固化材料性能的影响[J]. 化工学报, 2022, 73(9): 4187-4193. |
[12] | 靳文章, 张玉玲, 贾晓宇. 电化学高级氧化对HEDP的降解效能研究[J]. 化工学报, 2022, 73(9): 4062-4069. |
[13] | 郑默, 李晓霞. ReaxFF MD模拟揭示的煤热解挥发分自由基反应的竞争与协调[J]. 化工学报, 2022, 73(6): 2732-2741. |
[14] | 肖习羽, 李青松, 吴俊文, 李国新, 陈国元. VUV/UV/NaClO工艺降解百里香酚协同效应及活性物质贡献[J]. 化工学报, 2022, 73(5): 2233-2241. |
[15] | 余彬彬, 蒋新生, 禹进, 蔡运雄, 李玉玺, 何东海, 于佳佳. 全氟己酮抑制航空煤油燃烧实验及化学动力学研究[J]. 化工学报, 2022, 73(4): 1834-1844. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 119
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 286
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||