化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1631-1646.doi: 10.11949/0438-1157.20211657
Xin ZHANG(),Li ZHOU(
),Shihui WANG,Xu JI,Kexin BI
摘要:
针对原油性质的不确定性,提出了一种基于质量传递机理的随机规划建模框架,以实现炼厂氢气网络在经济效益和抗扰能力上的同步优化。该框架耦合了常减压蒸馏、加氢精制以及闪蒸分离等过程单元,从微观上解析原油性质波动对网络运行的影响;采用了代理模型技术增设脱硫模块,并利用了二阶段随机规划方法改造管网,从宏观上优化氢气网络以满足生产要求。为验证所提方法的有效性和适用性,对某一现有的炼厂氢网络进行了改造设计研究。结果表明,集成过程单元的多场景优化策略能够有效提升网络的经济性能,并且能使其灵活应对因原油性质波动引起的操作场景的改变。
中图分类号:
1 | Simpson D M. Hydrogen management in a synthetic crude refinery[J]. International Journal of Hydrogen Energy, 1984, 9(1/2): 95-99. |
2 | Alves J J, Towler G P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5759-5769. |
3 | Liao Z W, Rong G, Wang J D, et al. Rigorous algorithmic targeting methods for hydrogen networks(Ⅱ): Systems with one hydrogen purification unit[J]. Chemical Engineering Science, 2011, 66(5): 821-833. |
4 | 杨敏博, 冯霄. 提纯回用氢网络的夹点变化规律[J]. 化工学报, 2013, 64(12): 4544-4549. |
Yang M B, Feng X. Change rules of pinch point for hydrogen distribution systems with purification reuse[J]. CIESC Journal, 2013, 64(12): 4544-4549. | |
5 | Hallale N, Liu F. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research, 2001, 6(1): 81-98. |
6 | Liu F, Zhang N. Strategy of purifier selection and integration in hydrogen networks[J]. Chemical Engineering Research and Design, 2004, 82(10): 1315-1330. |
7 | Liao Z W, Wang J D, Yang Y R, et al. Integrating purifiers in refinery hydrogen networks: a retrofit case study[J]. Journal of Cleaner Production, 2010, 18(3): 233-241. |
8 | Liao Z W, Tu G N, Lou J Y, et al. The influence of purifier models on hydrogen network optimization: insights from a case study[J]. International Journal of Hydrogen Energy, 2016, 41(10): 5243-5249. |
9 | 李开宇, 刘桂莲. 储氢提纯和氢网络的耦合优化[J]. 化工学报, 2020, 71(3): 1143-1153. |
Li K Y, Liu G L. Coupling optimization of hydrogen-storage based purification and hydrogen network[J]. CIESC Journal, 2020, 71(3): 1143-1153. | |
10 | Liu G L, Tang M Y, Feng X, et al. Evolutionary design methodology for resource allocation networks with multiple impurities[J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 2959-2970. |
11 | 刘桂莲, 刘永彪, 冯霄. 炼厂多杂质氢网络的集成[J]. 化工学报, 2012, 63(1): 163-169. |
Liu G L, Liu Y B, Feng X. Integration of refinery hydrogen network with multiple impurities[J]. CIESC Journal, 2012, 63(1): 163-169. | |
12 | Lou Y Q, Liao Z W, Sun J Y, et al. A novel two-step method to design inter-plant hydrogen network[J]. International Journal of Hydrogen Energy, 2019, 44(12): 5686-5695. |
13 | Jia N, Zhang N. Multi-component optimisation for refinery hydrogen networks[J]. Energy, 2011, 36(8): 4663-4670. |
14 | Umana B, Shoaib A, Zhang N, et al. Integrating hydroprocessors in refinery hydrogen network optimisation [J]. Applied Energy, 2014, 133: 169-182. |
15 | Umana B, Zhang N, Smith R. Development of vacuum residue hydrodesulphurization-hydrocracking models and their integration with refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2016, 55(8): 2391-2406. |
16 | Zhang Q, Li J, Feng X. Thermodynamic principle based hydrogen network synthesis with hydrorefining feed oil sulfur content variation for total exergy minimization[J]. Journal of Cleaner Production, 2020, 256: 120230. |
17 | Zhou L, Liao Z W, Wang J D, et al. Hydrogen sulfide removal process embedded optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18163-18174. |
18 | Yang M B, Feng X. Simulation-based optimization and design of refinery hydrogen networks with hydrogen sulfide removal[J]. International Journal of Hydrogen Energy, 2019, 44(43): 23833-23845. |
19 | Wang S H, Zhou L, Ji X, et al. A surrogate-assisted approach for the optimal synthesis of refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16798-16812. |
20 | Li H R, Liao Z W, Sun J Y, et al. Simultaneous design of hydrogen allocation networks and PSA inside refineries[J]. Industrial & Engineering Chemistry Research, 2020, 59(10): 4712-4720. |
21 | Xia Z P, Wang S H, Zhou L, et al. Surrogate-assisted optimization of refinery hydrogen networks with hydrogen sulfide removal[J]. Journal of Cleaner Production, 2021, 310: 127477. |
22 | Chen Y, Lin M, Jiang H, et al. Optimal design and operation of refinery hydrogen systems under multi-scale uncertainties[J]. Computers & Chemical Engineering, 2020, 138: 106822. |
23 | Sahinidis N V. Optimization under uncertainty: state-of-the-art and opportunities[J]. Computers & Chemical Engineering, 2004, 28(6/7): 971-983. |
24 | Almansoori A, Shah N. Design and operation of a future hydrogen supply chain: snapshot model[J]. Chemical Engineering Research and Design, 2006, 84(6): 423-438. |
25 | Betancourt-torcat A, Almansoori A, Elkamel A, et al. Stochastic modeling of the oil sands operations under greenhouse gas emission restrictions and water management[J]. Energy & Fuels, 2013, 27(9): 5559-5578. |
26 | Jiao Y Q, Su H Y, Hou W F, et al. Optimization of refinery hydrogen network based on chance constrained programming[J]. Chemical Engineering Research and Design, 2012, 90(10): 1553-1567. |
27 | Jagannath A, Almansoori A. Modeling of hydrogen networks in a refinery using a stochastic programming appraoch[J]. Industrial & Engineering Chemistry Research, 2014, 53(51): 19715-19735. |
28 | Lou J Y, Liao Z W, Jiang B B, et al. Robust optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2014, 39(3): 1210-1219. |
29 | Lin D K J, Box G E P, Draper N R, et al. Empirical model building and response surface[J]. Journal of the American Statistical Association, 1998, 93(441): 401. |
30 | Kleijnen J P C. Kriging metamodeling in simulation: a review[J]. European Journal of Operational Research, 2009, 192(3): 707-716. |
31 | Drucker H, Surges C J C, Kaufman L, et al. Support vector regression machines[J]. Advances in Neural Information Processing Systems, 1997: 155-161. |
32 | Haykin S S. Neural Networks and Learning Machines[M]. 3rd ed. Pearson Education: Upper Saddle River, 2009. |
33 | Brownbridge G, Azadi P, Smallbone A, et al. The future viability of algae-derived biodiesel under economic and technical uncertainties[J]. Bioresource Technology, 2014, 151: 166-173. |
34 | Sobol I M. On the distribution of points in a cube and the approximate evaluation of integrals[J]. USSR Computational Mathematics and Mathematical Physics, 1967, 7(4): 86-112. |
35 | 李梅, 程逵炜, 孙兆虎, 等. 井口天然气醇胺法脱酸系统的模拟优化[J]. 工程热物理学报, 2015, 36(9): 1853-1857. |
Li M, Cheng K W, Sun Z H, et al. Optimization of the miniature wellhead natural gas alkanolamine process deacidification units[J]. Journal of Engineering Thermophysics, 2015, 36(9): 1853-1857. | |
36 | 任远春, 刘为民, 霍明辰, 等. 常减压装置腐蚀性介质氯、氮、硫分布及传递研究[J]. 广东化工, 2021, 48(10): 179-181. |
Ren Y C, Liu W M, Huo M C, et al. Research on distribution and transfer of corrosive media chlorine, nitrogen and sulfur in crude unit[J]. Guangdong Chemical Industry, 2021, 48(10): 179-181. | |
37 | Wu L, Wang Y Q, Zheng L, et al. Stepwise optimization of hydrogen network integrated sulfur compound removal kinetics and a fluid catalytic cracker[J]. Chemical Engineering Research and Design, 2019, 151: 168-178. |
38 | Hasenberg D M, Campagnolo J F Jr. Modeling and simulation of a reaction for hydrotreating hydrocarbon oil: US5841678[P]. 1998-11-24. |
39 | 宣吉, 廖祖维, 荣冈, 等. 基于随机规划的炼厂氢网络改造设计[J]. 化工学报, 2010, 61(2): 398-404. |
Xuan J, Liao Z W, Rong G, et al. Hydrogen network retrofit design in refinery based on stochastic programming[J]. CIESC Journal, 2010, 61(2): 398-404. | |
40 | Viswanathan J, Grossmann I E. A combined penalty function and outer-approximation method for MINLP optimization[J]. Computers & Chemical Engineering, 1990, 14(7): 769-782. |
[1] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[2] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[3] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[4] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[5] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
[6] | 贠程, 王倩琳, 陈锋, 张鑫, 窦站, 颜廷俊. 基于社团结构的化工过程风险演化路径深度挖掘[J]. 化工学报, 2023, 74(4): 1639-1650. |
[7] | 李纪元, 李金旺, 周刘伟. 不同扰流结构冷板传热性能研究[J]. 化工学报, 2023, 74(4): 1474-1488. |
[8] | 王子宗, 索寒生, 赵学良. 数字孪生智能乙烯工厂研究与构建[J]. 化工学报, 2023, 74(3): 1175-1186. |
[9] | 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274. |
[10] | 陈俊先, 姬忠礼, 赵瑜, 张倩, 周岩, 刘猛, 刘震. 基于微波技术的天然气管道内颗粒物在线检测方法研究[J]. 化工学报, 2023, 74(3): 1042-1053. |
[11] | 史克年, 郑景元, 钱宇, 杨思宇. 基于马尔可夫链的蒸汽动力系统两阶段随机规划[J]. 化工学报, 2023, 74(2): 807-817. |
[12] | 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806. |
[13] | 魏进家, 刘蕾, 杨小平. 面向高热流电子器件散热的环路热管研究进展[J]. 化工学报, 2023, 74(1): 60-73. |
[14] | 高学金, 程琨, 韩华云, 高慧慧, 齐咏生. 基于中心损失的条件生成式对抗网络的冷水机组故障诊断[J]. 化工学报, 2022, 73(9): 3950-3962. |
[15] | 王雅琳, 潘雨晴, 刘晨亮. 基于GSA-LSTM动态结构特征提取的间歇过程监测方法[J]. 化工学报, 2022, 73(9): 3994-4002. |
|