化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1631-1646.DOI: 10.11949/0438-1157.20211657
收稿日期:
2021-11-18
修回日期:
2022-01-07
出版日期:
2022-04-05
发布日期:
2022-04-25
通讯作者:
周利
作者简介:
张欣(1997—),女,硕士研究生,基金资助:
Xin ZHANG(),Li ZHOU(),Shihui WANG,Xu JI,Kexin BI
Received:
2021-11-18
Revised:
2022-01-07
Online:
2022-04-05
Published:
2022-04-25
Contact:
Li ZHOU
摘要:
针对原油性质的不确定性,提出了一种基于质量传递机理的随机规划建模框架,以实现炼厂氢气网络在经济效益和抗扰能力上的同步优化。该框架耦合了常减压蒸馏、加氢精制以及闪蒸分离等过程单元,从微观上解析原油性质波动对网络运行的影响;采用了代理模型技术增设脱硫模块,并利用了二阶段随机规划方法改造管网,从宏观上优化氢气网络以满足生产要求。为验证所提方法的有效性和适用性,对某一现有的炼厂氢网络进行了改造设计研究。结果表明,集成过程单元的多场景优化策略能够有效提升网络的经济性能,并且能使其灵活应对因原油性质波动引起的操作场景的改变。
中图分类号:
张欣, 周利, 王诗慧, 吉旭, 毕可鑫. 考虑原油性质波动的炼厂氢气网络集成优化[J]. 化工学报, 2022, 73(4): 1631-1646.
Xin ZHANG, Li ZHOU, Shihui WANG, Xu JI, Kexin BI. Integrated optimization of refinery hydrogen networks with crude oil properties fluctuations[J]. CIESC Journal, 2022, 73(4): 1631-1646.
场景 | 硫含量/(mg/kg) | 氮含量/(mg/kg) | 发生概率 |
---|---|---|---|
1 | 0.9097 | 0.2016 | 0.0400 |
2 | 0.9097 | 0.2058 | 0.1000 |
3 | 0.9097 | 0.2100 | 0.0600 |
4 | 0.9493 | 0.2016 | 0.1000 |
5 | 0.9493 | 0.2058 | 0.2500 |
6 | 0.9493 | 0.2100 | 0.1500 |
7 | 0.9888 | 0.2106 | 0.0600 |
8 | 0.9888 | 0.2058 | 0.1500 |
9 | 0.9888 | 0.2100 | 0.0900 |
表1 各场景下原油中的硫、氮含量数据
Table 1 Sulfur and nitrogen content data of crude oil in each scenario
场景 | 硫含量/(mg/kg) | 氮含量/(mg/kg) | 发生概率 |
---|---|---|---|
1 | 0.9097 | 0.2016 | 0.0400 |
2 | 0.9097 | 0.2058 | 0.1000 |
3 | 0.9097 | 0.2100 | 0.0600 |
4 | 0.9493 | 0.2016 | 0.1000 |
5 | 0.9493 | 0.2058 | 0.2500 |
6 | 0.9493 | 0.2100 | 0.1500 |
7 | 0.9888 | 0.2106 | 0.0600 |
8 | 0.9888 | 0.2058 | 0.1500 |
9 | 0.9888 | 0.2100 | 0.0900 |
加氢处理装置 | 油品流量/(t/h) | T/K | P/bar | LHSV/h-1 |
---|---|---|---|---|
DHT-1 | 150.00 | 633 | 67.2 | 1.92 |
DHT-2 | 373.81 | 648 | 70.0 | 2.00 |
GHT | 216.67 | 513 | 27.0 | 3.00 |
KHT-1 | 50.00 | 553 | 38.3 | 2.25 |
KHT-2 | 70.00 | 573 | 54.5 | 1.79 |
表2 加氢处理装置进料流量及操作条件
Table 2 Feed flowrate and operating conditions of hydrotreaters
加氢处理装置 | 油品流量/(t/h) | T/K | P/bar | LHSV/h-1 |
---|---|---|---|---|
DHT-1 | 150.00 | 633 | 67.2 | 1.92 |
DHT-2 | 373.81 | 648 | 70.0 | 2.00 |
GHT | 216.67 | 513 | 27.0 | 3.00 |
KHT-1 | 50.00 | 553 | 38.3 | 2.25 |
KHT-2 | 70.00 | 573 | 54.5 | 1.79 |
项目 | 距离/m | ||||
---|---|---|---|---|---|
DHT-1 | DHT-2 | GHT | KHT-1 | KHT-2 | |
HP-DS | 540 | 360 | 350 | 450 | 550 |
LP-DS | 480 | 310 | 500 | 750 | 90 |
表3 预留脱硫塔和氢阱之间的管道距离
Table 3 Piping distances among the reserved location for the desulfurization units and the hydrogen sinks
项目 | 距离/m | ||||
---|---|---|---|---|---|
DHT-1 | DHT-2 | GHT | KHT-1 | KHT-2 | |
HP-DS | 540 | 360 | 350 | 450 | 550 |
LP-DS | 480 | 310 | 500 | 750 | 90 |
Item | DHT-1 | DHT-2 | GHT | KHT-1 | KHT-2 |
---|---|---|---|---|---|
DHT1-PC1 | 0.7041 | 0 | 0 | 0 | 0 |
DHT1-PC2 | 0.2959 | 0 | 0 | 0 | 0 |
DHT2-PC1 | 0 | 0.7935 | 0 | 0 | 0 |
DHT2-PC2 | 0 | 0.2065 | 0 | 0 | 0 |
GHT-PC | 0 | 0 | 1.0000 | 0 | 0 |
KHT1-PC | 0 | 0 | 0 | 1.0000 | 0 |
KHT2-PC | 0 | 0 | 0 | 0 | 1.0000 |
表4 加氢处理装置进料组成
Table 4 Feed composition of hydrotreaters
Item | DHT-1 | DHT-2 | GHT | KHT-1 | KHT-2 |
---|---|---|---|---|---|
DHT1-PC1 | 0.7041 | 0 | 0 | 0 | 0 |
DHT1-PC2 | 0.2959 | 0 | 0 | 0 | 0 |
DHT2-PC1 | 0 | 0.7935 | 0 | 0 | 0 |
DHT2-PC2 | 0 | 0.2065 | 0 | 0 | 0 |
GHT-PC | 0 | 0 | 1.0000 | 0 | 0 |
KHT1-PC | 0 | 0 | 0 | 1.0000 | 0 |
KHT2-PC | 0 | 0 | 0 | 0 | 1.0000 |
虚拟组分 | 相对密度 | 分子量 | 馏程/℃ | ||||
---|---|---|---|---|---|---|---|
HK(初馏点) | 10% | 50% | 90% | KK(终馏点) | |||
DHT1-PC1 | 0.8478 | 239.567 | 208 | 249 | 300 | 346 | 370 |
DHT1-PC2 | 0.8647 | 246.974 | 225 | 256 | 311 | 354 | 380 |
DHT2-PC1 | 0.8439 | 233.709 | 211 | 248 | 291 | 347 | 370 |
DHT2-PC2 | 0.8396 | 227.525 | 180 | 233 | 288 | 348 | 376 |
GHT-PC | 0.7441 | 95.420 | 36.9 | 49.9 | 105 | 172 | 202 |
KHT1-PC | 0.7832 | 155.505 | 151 | 172 | 189 | 230 | — |
KHT2-PC | 0.8122 | 180.524 | — | 124 | 257 | 363 | 373 |
表5 虚拟组分性质
Table 5 Properties of pseudo-components
虚拟组分 | 相对密度 | 分子量 | 馏程/℃ | ||||
---|---|---|---|---|---|---|---|
HK(初馏点) | 10% | 50% | 90% | KK(终馏点) | |||
DHT1-PC1 | 0.8478 | 239.567 | 208 | 249 | 300 | 346 | 370 |
DHT1-PC2 | 0.8647 | 246.974 | 225 | 256 | 311 | 354 | 380 |
DHT2-PC1 | 0.8439 | 233.709 | 211 | 248 | 291 | 347 | 370 |
DHT2-PC2 | 0.8396 | 227.525 | 180 | 233 | 288 | 348 | 376 |
GHT-PC | 0.7441 | 95.420 | 36.9 | 49.9 | 105 | 172 | 202 |
KHT1-PC | 0.7832 | 155.505 | 151 | 172 | 189 | 230 | — |
KHT2-PC | 0.8122 | 180.524 | — | 124 | 257 | 363 | 373 |
项目 | 输入变量范围/(kmol/h) | ||||||||
---|---|---|---|---|---|---|---|---|---|
HP-DSU | 7000 | 500 | 100 | 90 | 35 | 10 | 40 | 10 | 65 |
HP-DSL | 3000 | 170 | 45 | 40 | 10 | 1.5 | 10 | 2 | 10 |
LP-DSU | 150 | 40 | 8.4 | 5 | 1 | 0.5 | 4.0 | 0.15 | 10 |
LP-DSL | 20 | 5 | 0.5 | 0.1 | 0.1 | 0.01 | 0.1 | 0.01 | 2 |
表6 脱硫装置的输入变量范围
Table 6 Domain of the input variables for the desulfurization unit
项目 | 输入变量范围/(kmol/h) | ||||||||
---|---|---|---|---|---|---|---|---|---|
HP-DSU | 7000 | 500 | 100 | 90 | 35 | 10 | 40 | 10 | 65 |
HP-DSL | 3000 | 170 | 45 | 40 | 10 | 1.5 | 10 | 2 | 10 |
LP-DSU | 150 | 40 | 8.4 | 5 | 1 | 0.5 | 4.0 | 0.15 | 10 |
LP-DSL | 20 | 5 | 0.5 | 0.1 | 0.1 | 0.01 | 0.1 | 0.01 | 2 |
输出变量 | HP-DS单元 | LP-DS单元 | ||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
0.00023 | 0.9999 | 0.00001 | 0.9999 | |
0.00034 | 0.9999 | 0.00007 | 0.9999 | |
0.00429 | 0.9996 | 0.00333 | 0.9997 | |
0.01490 | 0.9948 | 0.00430 | 0.9996 | |
0.02499 | 0.9888 | 0.01656 | 0.9940 | |
0.00485 | 0.9993 | 0.00034 | 0.9999 |
表7 脱硫单元代理模型验证结果
Table 7 Results from the data correlation of the desulfurization unit
输出变量 | HP-DS单元 | LP-DS单元 | ||
---|---|---|---|---|
RMSE | R2 | RMSE | R2 | |
0.00023 | 0.9999 | 0.00001 | 0.9999 | |
0.00034 | 0.9999 | 0.00007 | 0.9999 | |
0.00429 | 0.9996 | 0.00333 | 0.9997 | |
0.01490 | 0.9948 | 0.00430 | 0.9996 | |
0.02499 | 0.9888 | 0.01656 | 0.9940 | |
0.00485 | 0.9993 | 0.00034 | 0.9999 |
项目 | 原氢气网络模型 | 确定性模型 | 随机规划模型 |
---|---|---|---|
变量数量 | 62 | 97 | 97 |
方程个数 | 68 | 132 | 132 |
CPU计算时间 | 0.016 s | 2.578 s | 44.875 s |
计算机配置 | 64位操作系统,16 GB RAM 1.10 GHz Intel Core i7-10710U | ||
求解器 | GAMS-DICOPT |
Table 9 Computational effort of the solver and optimization time for different models
项目 | 原氢气网络模型 | 确定性模型 | 随机规划模型 |
---|---|---|---|
变量数量 | 62 | 97 | 97 |
方程个数 | 68 | 132 | 132 |
CPU计算时间 | 0.016 s | 2.578 s | 44.875 s |
计算机配置 | 64位操作系统,16 GB RAM 1.10 GHz Intel Core i7-10710U | ||
求解器 | GAMS-DICOPT |
图11 确定性模型与随机规划模型的脱硫单元处理量及脱硫率对比
Fig.11 Comparison of desulfurization unit inlet flowrate and desulfurization rate between deterministic model and stochastic programming model
1 | Simpson D M. Hydrogen management in a synthetic crude refinery[J]. International Journal of Hydrogen Energy, 1984, 9(1/2): 95-99. |
2 | Alves J J, Towler G P. Analysis of refinery hydrogen distribution systems[J]. Industrial & Engineering Chemistry Research, 2002, 41(23): 5759-5769. |
3 | Liao Z W, Rong G, Wang J D, et al. Rigorous algorithmic targeting methods for hydrogen networks(Ⅱ): Systems with one hydrogen purification unit[J]. Chemical Engineering Science, 2011, 66(5): 821-833. |
4 | 杨敏博, 冯霄. 提纯回用氢网络的夹点变化规律[J]. 化工学报, 2013, 64(12): 4544-4549. |
Yang M B, Feng X. Change rules of pinch point for hydrogen distribution systems with purification reuse[J]. CIESC Journal, 2013, 64(12): 4544-4549. | |
5 | Hallale N, Liu F. Refinery hydrogen management for clean fuels production[J]. Advances in Environmental Research, 2001, 6(1): 81-98. |
6 | Liu F, Zhang N. Strategy of purifier selection and integration in hydrogen networks[J]. Chemical Engineering Research and Design, 2004, 82(10): 1315-1330. |
7 | Liao Z W, Wang J D, Yang Y R, et al. Integrating purifiers in refinery hydrogen networks: a retrofit case study[J]. Journal of Cleaner Production, 2010, 18(3): 233-241. |
8 | Liao Z W, Tu G N, Lou J Y, et al. The influence of purifier models on hydrogen network optimization: insights from a case study[J]. International Journal of Hydrogen Energy, 2016, 41(10): 5243-5249. |
9 | 李开宇, 刘桂莲. 储氢提纯和氢网络的耦合优化[J]. 化工学报, 2020, 71(3): 1143-1153. |
Li K Y, Liu G L. Coupling optimization of hydrogen-storage based purification and hydrogen network[J]. CIESC Journal, 2020, 71(3): 1143-1153. | |
10 | Liu G L, Tang M Y, Feng X, et al. Evolutionary design methodology for resource allocation networks with multiple impurities[J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 2959-2970. |
11 | 刘桂莲, 刘永彪, 冯霄. 炼厂多杂质氢网络的集成[J]. 化工学报, 2012, 63(1): 163-169. |
Liu G L, Liu Y B, Feng X. Integration of refinery hydrogen network with multiple impurities[J]. CIESC Journal, 2012, 63(1): 163-169. | |
12 | Lou Y Q, Liao Z W, Sun J Y, et al. A novel two-step method to design inter-plant hydrogen network[J]. International Journal of Hydrogen Energy, 2019, 44(12): 5686-5695. |
13 | Jia N, Zhang N. Multi-component optimisation for refinery hydrogen networks[J]. Energy, 2011, 36(8): 4663-4670. |
14 | Umana B, Shoaib A, Zhang N, et al. Integrating hydroprocessors in refinery hydrogen network optimisation [J]. Applied Energy, 2014, 133: 169-182. |
15 | Umana B, Zhang N, Smith R. Development of vacuum residue hydrodesulphurization-hydrocracking models and their integration with refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2016, 55(8): 2391-2406. |
16 | Zhang Q, Li J, Feng X. Thermodynamic principle based hydrogen network synthesis with hydrorefining feed oil sulfur content variation for total exergy minimization[J]. Journal of Cleaner Production, 2020, 256: 120230. |
17 | Zhou L, Liao Z W, Wang J D, et al. Hydrogen sulfide removal process embedded optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2012, 37(23): 18163-18174. |
18 | Yang M B, Feng X. Simulation-based optimization and design of refinery hydrogen networks with hydrogen sulfide removal[J]. International Journal of Hydrogen Energy, 2019, 44(43): 23833-23845. |
19 | Wang S H, Zhou L, Ji X, et al. A surrogate-assisted approach for the optimal synthesis of refinery hydrogen networks[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16798-16812. |
20 | Li H R, Liao Z W, Sun J Y, et al. Simultaneous design of hydrogen allocation networks and PSA inside refineries[J]. Industrial & Engineering Chemistry Research, 2020, 59(10): 4712-4720. |
21 | Xia Z P, Wang S H, Zhou L, et al. Surrogate-assisted optimization of refinery hydrogen networks with hydrogen sulfide removal[J]. Journal of Cleaner Production, 2021, 310: 127477. |
22 | Chen Y, Lin M, Jiang H, et al. Optimal design and operation of refinery hydrogen systems under multi-scale uncertainties[J]. Computers & Chemical Engineering, 2020, 138: 106822. |
23 | Sahinidis N V. Optimization under uncertainty: state-of-the-art and opportunities[J]. Computers & Chemical Engineering, 2004, 28(6/7): 971-983. |
24 | Almansoori A, Shah N. Design and operation of a future hydrogen supply chain: snapshot model[J]. Chemical Engineering Research and Design, 2006, 84(6): 423-438. |
25 | Betancourt-torcat A, Almansoori A, Elkamel A, et al. Stochastic modeling of the oil sands operations under greenhouse gas emission restrictions and water management[J]. Energy & Fuels, 2013, 27(9): 5559-5578. |
26 | Jiao Y Q, Su H Y, Hou W F, et al. Optimization of refinery hydrogen network based on chance constrained programming[J]. Chemical Engineering Research and Design, 2012, 90(10): 1553-1567. |
27 | Jagannath A, Almansoori A. Modeling of hydrogen networks in a refinery using a stochastic programming appraoch[J]. Industrial & Engineering Chemistry Research, 2014, 53(51): 19715-19735. |
28 | Lou J Y, Liao Z W, Jiang B B, et al. Robust optimization of hydrogen network[J]. International Journal of Hydrogen Energy, 2014, 39(3): 1210-1219. |
29 | Lin D K J, Box G E P, Draper N R, et al. Empirical model building and response surface[J]. Journal of the American Statistical Association, 1998, 93(441): 401. |
30 | Kleijnen J P C. Kriging metamodeling in simulation: a review[J]. European Journal of Operational Research, 2009, 192(3): 707-716. |
31 | Drucker H, Surges C J C, Kaufman L, et al. Support vector regression machines[J]. Advances in Neural Information Processing Systems, 1997: 155-161. |
32 | Haykin S S. Neural Networks and Learning Machines[M]. 3rd ed. Pearson Education: Upper Saddle River, 2009. |
33 | Brownbridge G, Azadi P, Smallbone A, et al. The future viability of algae-derived biodiesel under economic and technical uncertainties[J]. Bioresource Technology, 2014, 151: 166-173. |
34 | Sobol I M. On the distribution of points in a cube and the approximate evaluation of integrals[J]. USSR Computational Mathematics and Mathematical Physics, 1967, 7(4): 86-112. |
35 | 李梅, 程逵炜, 孙兆虎, 等. 井口天然气醇胺法脱酸系统的模拟优化[J]. 工程热物理学报, 2015, 36(9): 1853-1857. |
Li M, Cheng K W, Sun Z H, et al. Optimization of the miniature wellhead natural gas alkanolamine process deacidification units[J]. Journal of Engineering Thermophysics, 2015, 36(9): 1853-1857. | |
36 | 任远春, 刘为民, 霍明辰, 等. 常减压装置腐蚀性介质氯、氮、硫分布及传递研究[J]. 广东化工, 2021, 48(10): 179-181. |
Ren Y C, Liu W M, Huo M C, et al. Research on distribution and transfer of corrosive media chlorine, nitrogen and sulfur in crude unit[J]. Guangdong Chemical Industry, 2021, 48(10): 179-181. | |
37 | Wu L, Wang Y Q, Zheng L, et al. Stepwise optimization of hydrogen network integrated sulfur compound removal kinetics and a fluid catalytic cracker[J]. Chemical Engineering Research and Design, 2019, 151: 168-178. |
38 | Hasenberg D M, Campagnolo J F Jr. Modeling and simulation of a reaction for hydrotreating hydrocarbon oil: US5841678[P]. 1998-11-24. |
39 | 宣吉, 廖祖维, 荣冈, 等. 基于随机规划的炼厂氢网络改造设计[J]. 化工学报, 2010, 61(2): 398-404. |
Xuan J, Liao Z W, Rong G, et al. Hydrogen network retrofit design in refinery based on stochastic programming[J]. CIESC Journal, 2010, 61(2): 398-404. | |
40 | Viswanathan J, Grossmann I E. A combined penalty function and outer-approximation method for MINLP optimization[J]. Computers & Chemical Engineering, 1990, 14(7): 769-782. |
[1] | 陈哲文, 魏俊杰, 张玉明. 超临界水煤气化耦合SOFC发电系统集成及其能量转化机制[J]. 化工学报, 2023, 74(9): 3888-3902. |
[2] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[3] | 齐聪, 丁子, 余杰, 汤茂清, 梁林. 基于选择吸收纳米薄膜的太阳能温差发电特性研究[J]. 化工学报, 2023, 74(9): 3921-3930. |
[4] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
[5] | 文兆伦, 李沛睿, 张忠林, 杜晓, 侯起旺, 刘叶刚, 郝晓刚, 官国清. 基于自热再生的隔壁塔深冷空分工艺设计及优化[J]. 化工学报, 2023, 74(7): 2988-2998. |
[6] | 王光, 单发顺, 钱禹丞, 焦建芳. 基于集成学习传递熵的化工过程微小故障检测方法[J]. 化工学报, 2023, 74(7): 2967-2978. |
[7] | 余娅洁, 李静茹, 周树锋, 李清彪, 詹国武. 基于天然生物模板构建纳米材料及集成催化剂研究进展[J]. 化工学报, 2023, 74(7): 2735-2752. |
[8] | 李贵贤, 曹阿波, 孟文亮, 王东亮, 杨勇, 周怀荣. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
[9] | 江锦波, 彭新, 许文烜, 门日秀, 刘畅, 彭旭东. 泵出型螺旋槽油气密封泄漏特性及参数影响研究[J]. 化工学报, 2023, 74(6): 2538-2554. |
[10] | 邵远哲, 赵忠盖, 刘飞. 基于共同趋势模型的非平稳过程质量相关故障检测方法[J]. 化工学报, 2023, 74(6): 2522-2537. |
[11] | 孙永尧, 高秋英, 曾文广, 王佳铭, 陈艺飞, 周永哲, 贺高红, 阮雪华. 面向含氮油田伴生气提质利用的膜耦合分离工艺设计优化[J]. 化工学报, 2023, 74(5): 2034-2045. |
[12] | 刘尚豪, 贾胜坤, 罗祎青, 袁希钢. 基于梯度提升决策树的三组元精馏流程结构最优化[J]. 化工学报, 2023, 74(5): 2075-2087. |
[13] | 周必茂, 许世森, 王肖肖, 刘刚, 李小宇, 任永强, 谭厚章. 烧嘴偏转角度对气化炉渣层分布特性的影响[J]. 化工学报, 2023, 74(5): 1939-1949. |
[14] | 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973. |
[15] | 许文烜, 江锦波, 彭新, 门日秀, 刘畅, 彭旭东. 宽速域三种典型型槽油气密封泄漏与成膜特性对比研究[J]. 化工学报, 2023, 74(4): 1660-1679. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||