化工学报 ›› 2022, Vol. 73 ›› Issue (4): 1623-1630.doi: 10.11949/0438-1157.20211737

• 过程系统工程 • 上一篇    下一篇

面向对象的炼油厂全厂调度优化模型及程序框架

韩彪(),尚超,江永亨,黄德先()   

  1. 清华大学自动化系,北京 100084
  • 收稿日期:2021-12-06 修回日期:2022-01-21 出版日期:2022-04-05 发布日期:2022-04-25
  • 通讯作者: 黄德先 E-mail:hanb16@mails.tsinghua.edu.cn;huangdx@tsinghua.edu.cn
  • 作者简介:韩彪(1994—),男,博士研究生,hanb16@mails.tsinghua.edu.cn
  • 基金资助:
    国家自然科学基金项目(61673236)

Object-oriented refinery plant-wide scheduling optimization model and program framework

Biao HAN(),Chao SHANG,Yongheng JIANG,Dexian HUANG()   

  1. Department of Automation, Tsinghua University, Beijing 100084, China
  • Received:2021-12-06 Revised:2022-01-21 Published:2022-04-05 Online:2022-04-25
  • Contact: Dexian HUANG E-mail:hanb16@mails.tsinghua.edu.cn;huangdx@tsinghua.edu.cn

摘要:

基于考虑炼油装置优化操作模式切换过程的总体思想,构建了一套炼油厂全厂调度优化离散时间模型结构,并形成配套的程序框架。采用面向对象的建模方式,引入模态指示矩阵等表达,为炼油厂生产调度建模提供了较为清晰的参考思路。通过GAMS和MATLAB的数据交互,实现二者优势互补,为进一步研究炼油生产调度模型提供便利、奠定基础。案例研究验证了所提模型结构及程序框架的有效性。

关键词: 整体优化, 模型简化, 集成, 炼油厂, 调度, 离散时间

Abstract:

Under the overall idea of the refinery scheduling model considering optimal operating mode switching of units, a refinery plant-wide scheduling optimization discrete-time model structure is constructed with a matching program framework. The object-oriented modeling method is adopted, and expressions such as modal indication matrix are introduced, which provides a clear reference idea for the generalized oil refinery production scheduling modeling. Through the data interaction between GAMS and MATLAB, the complementary advantages of the two are realized, which provides convenience and lays a foundation for further research on the refinery production scheduling model. The case study verifies the effectiveness of the proposed model structure and program framework.

Key words: global optimization, model reduction, integration, refinery, scheduling, discrete-time

中图分类号: 

  • TB 114.1

图1

一个典型炼油厂生产流程简图"

图2

装置FCCU的模态转换过程示意图"

表1

案例订单需求信息"

订单

交货

时刻

柴油/吨汽油/吨
GⅢ0#GⅢ10#GⅣ0#GⅢ90#GⅢ93#GⅢ97#JⅣ93#JⅣ97#
l116 h末600660368000500
l232 h末200300350200450400170130
l360 h末0000354611786400

图3

调度优化求解结果甘特图(单位:t/h)"

1 黄德先, 江永亨, 金以慧. 炼油工业过程控制的研究现状、问题与展望[J]. 自动化学报, 2017, 43(6): 902-916.
Huang D X, Jiang Y H, Jin Y H. Present research situation, major bottlenecks, and prospect of refinery industry process control[J]. Acta Automatica Sinica, 2017, 43(6): 902-916.
2 邢勐. 炼油工业过程的控制和研究[J]. 当代化工研究, 2021(20): 24-25.
Xing M. Process control and research in oil refining industry[J]. Modern Chemical Research, 2021(20): 24-25.
3 侯芙生. 中国炼油技术[M]. 3版. 北京: 中国石化出版社, 2011.
Hou F S. Chinese Oil Refining Technology[M]. 3rd ed. Beijing: China Petrochemical Press, 2011.
4 李莉, 白雪松. 我国炼油行业发展及成品油质量升级建议[J]. 化学工业, 2016, 34(5): 15-20.
Li L, Bai X S. The suggestion of the product quality upgrading for the development of China's refinery industry[J]. Chemical Industry, 2016, 34(5): 15-20.
5 刘晓宇, 傅军, 邹劲松, 等. 未来中国炼油技术预见探究[J]. 当代石油石化, 2021, 29(10): 1-9.
Liu X Y, Fu J, Zou J S, et al. Research on the foresight of future Chinese refining technology[J]. Petroleum & Petrochemical Today, 2021, 29(10): 1-9.
6 刘初春, 杨维军, 孙琦. 中国炼油行业碳减排路径思考[J]. 国际石油经济, 2021, 29(8): 8-13.
Liu C C, Yang W J, Sun Q. Thinking on carbon emission reduction path of China's refining industry[J]. International Petroleum Economics, 2021, 29(8): 8-13.
7 曹湘洪. 能源转型中我国炼油工业面临的挑战与对策[J]. 石油炼制与化工, 2021, 52(10): 1-9.
Cao X H. Challenges and countermeasures of China's oil refining industry in transformation of energy utilization[J]. Petroleum Processing and Petrochemicals, 2021, 52(10): 1-9.
8 丁进良, 杨翠娥, 陈远东, 等. 复杂工业过程智能优化决策系统的现状与展望[J]. 自动化学报, 2018, 44(11): 1931-1943.
Ding J L, Yang C E, Chen Y D, et al. Research progress and prospects of intelligent optimization decision making in complex industrial process[J]. Acta Automatica Sinica, 2018, 44(11): 1931-1943.
9 陈远东, 丁进良. 炼油生产调度研究现状与挑战[J/OL]. 控制与决策. [2021-12-16]. .
Chen Y D, Ding J L. State­of­arts and challenges on production scheduling of refinery[J/OL]. 控制与决策. [2021-12-16]. .
10 柯晓明, 乞孟迪, 吕晓东, 等. “双碳”目标下中国炼化行业“十四五”发展新特点分析与展望[J]. 国际石油经济, 2021, 29(5): 33-38.
Ke X M, Qi M D, Lyu X D, et al. Analysis of the new features and prospect on the 14th Five-Year Plan development of China's refinery and chemical industry under the “dual carbon” goal[J]. International Petroleum Economics, 2021, 29(5): 33-38.
11 王浩俨. 炼油化工企业生产调度系统优化的方式方法[J]. 化工管理, 2021(11): 114-115.
Wang H Y. Optimization method of production scheduling system in refinery and chemical enterprises[J]. Chemical Enterprise Management, 2021(11): 114-115.
12 Joly M, Odloak D, Miyake M, et al. Refinery production scheduling toward Industry 4.0[J]. Frontiers of Engineering Management, 2018, 5(2): 202-213.
13 Li M. Multi-periodic refinery scheduling based on generalized disjunctive programming[J]. Journal of Physics: Conference Series, 2020, 1575(1): 012195.
14 Wu N Q, Li Z W, Qu T. Energy efficiency optimization in scheduling crude oil operations of refinery based on linear programming[J]. Journal of Cleaner Production, 2017, 166: 49-57.
15 Yu L, Wang S J, Xu Q. Optimal scheduling for simultaneous refinery manufacturing and multi oil-product pipeline distribution[J]. Computers & Chemical Engineering, 2022, 157: 107613.
16 Xu J L, Qu H L, Wang S J, et al. A new proactive scheduling methodology for front-end crude oil and refinery operations under uncertainty of shipping delay[J]. Industrial & Engineering Chemistry Research, 2017, 56(28): 8041-8053.
17 Pereira C S, Dias D M, Vellasco M M B R, et al. Crude oil refinery scheduling: addressing a real-world multiobjective problem through genetic programming and dominance-based approaches[C]//GECCO '18: Proceedings of the Genetic and Evolutionary Computation Conference Companion. New York, USA: Association for Computing Machinery, 2018: 1821-1828.
18 Chen Y D, Ding J L. Discrete-time scheduling model of entire refinery with multiscale operation time[C]//2021 3rd International Conference on Industrial Artificial Intelligence (IAI). Shenyang, China: IEEE, 2021: 1-6.
19 Duan Q Q. An MILP-NLP decomposition approach applied to a refinery scheduling problem[C]//2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion. Macao, China, 2020: 411-417.
20 Chen Y D, Ding J L, Chai T Y. A knowledge transfer based scheduling algorithm for large-scale refinery production[J]. IEEE Transactions on Industrial Informatics, 2022, 18(2): 869-879.
21 Ossorio-Castillo J, Pena-Brage F. Optimization of a refinery scheduling process with column generation and a quantum annealer[J/OL]. Optimization and Engineering, 2021, .
22 Lyu W X, Zhu Y, Huang D X, et al. A new strategy of integrated control and on-line optimization on high-purity distillation process[J]. Chinese Journal of Chemical Engineering, 2010, 18(1): 66-79.
23 Gao X Y, Shang C, Jiang Y H, et al. Refinery scheduling with varying crude: a deep belief network classification and multimodel approach[J]. AIChE Journal, 2014, 60(7): 2525-2532.
24 Gao X Y, Jiang Y H, Chen T, et al. Optimizing scheduling of refinery operations based on piecewise linear models[J]. Computers & Chemical Engineering, 2015, 75: 105-119.
25 Shi L, Jiang Y H, Wang L, et al. Refinery production scheduling involving operational transitions of mode switching under predictive control system[J]. Industrial & Engineering Chemistry Research, 2014, 53(19): 8155-8170.
26 张璐. 炼油厂全流程生产调度的模型重构和两层算法研究[D]. 北京: 清华大学, 2016.
Zhang L. Research on the reformulation and two-level algorithm for overall refinery production scheduling[D]. Beijing: Tsinghua University, 2016.
27 韩彪, 江永亨, 王凌, 等. 基于即时交货的离散时间模型及其在炼油过程调度优化中的应用[J]. 控制与决策, 2020, 35(6): 1361-1368.
Han B, Jiang Y H, Wang L, et al. Instant delivery based discrete-time model and its application in refinery process scheduling optimization[J]. Control and Decision, 2020, 35(6): 1361-1368.
28 General Algebraic Modeling System[CP/OL]. .
29 魏传江, 王浩, 谢新民, 等. GAMS用户指南[M]. 北京: 中国水利水电出版社, 2009.
Wei C J, Wang H, Xie X M, et al. GAMS User Guide[M]. Beijing: China Water & Power Press, 2009.
30 Ferris M C, Jain R, Dirkse S. GDXMRW: interfacing GAMS and MATLAB[R/OL]. .
[1] 高小永, 黄付宇, 郑万鹏, 彭雕, 杨一旭, 黄德先. 考虑调度操作安全平稳性的炼油化工生产过程调度优化[J]. 化工学报, 2023, 74(4): 1619-1629.
[2] 张生安, 刘桂莲. 高效太阳能电解水制氢系统及其性能的多目标优化[J]. 化工学报, 2023, 74(3): 1260-1274.
[3] 袁海鸥, 叶方俊, 张硕, 罗祎青, 袁希钢. 考虑中间换热器的能量集成精馏序列合成[J]. 化工学报, 2023, 74(2): 796-806.
[4] 高学金, 程琨, 韩华云, 高慧慧, 齐咏生. 基于中心损失的条件生成式对抗网络的冷水机组故障诊断[J]. 化工学报, 2022, 73(9): 3950-3962.
[5] 陈昊, 陈鹏忠, 彭孝军. 金属基极紫外光刻胶[J]. 化工学报, 2022, 73(8): 3307-3325.
[6] 侯起旺, 文兆伦, 张忠林, 刘叶刚, 杨景轩, 陈东良, 郝晓刚, 官国清. 一种煤基多联产碳循环系统的设计及评价[J]. 化工学报, 2022, 73(5): 2073-2082.
[7] 钱宇, 陈耀熙, 史晓斐, 杨思宇. 太阳能波动特性大数据分析与风光互补耦合制氢系统集成[J]. 化工学报, 2022, 73(5): 2101-2110.
[8] 段文婷, 任思月, 冯霄, 王彧斐. 与换热网络热集成的精馏塔压优化[J]. 化工学报, 2022, 73(5): 2052-2059.
[9] 张淑君, 王诗慧, 张欣, 吉旭, 戴一阳, 党亚固, 周利. 集成轻烃回收单元代理模型的氢气网络多目标优化[J]. 化工学报, 2022, 73(4): 1658-1672.
[10] 张欣, 周利, 王诗慧, 吉旭, 毕可鑫. 考虑原油性质波动的炼厂氢气网络集成优化[J]. 化工学报, 2022, 73(4): 1631-1646.
[11] 孟文亮, 李贵贤, 周怀荣, 李婧玮, 王健, 王可, 范学英, 王东亮. 绿氢重构的粉煤气化煤制甲醇近零碳排放工艺研究[J]. 化工学报, 2022, 73(4): 1714-1723.
[12] 赵丽文, 刘桂莲. 苯加氢制环己烯装置能量系统集成及催化剂再生周期优化[J]. 化工学报, 2022, 73(12): 5494-5503.
[13] 林渠成, 廖祖维. 基于分解算法的功热交换网络多目标优化[J]. 化工学报, 2022, 73(11): 5047-5055.
[14] 张弛, 李浩, 胡海涛, 朱翀, 张玉莹, 南国鹏, 舒悦. 基于自动特征工程的飞行器轴承故障诊断[J]. 化工学报, 2021, 72(S1): 430-436.
[15] 徐健玮, 梁颖宗, 罗向龙, 陈健勇, 杨智, 陈颖. 液化天然气深冷-膜蒸馏海水淡化系统集成与分析[J]. 化工学报, 2021, 72(S1): 437-444.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!