化工学报 ›› 2022, Vol. 73 ›› Issue (6): 2708-2721.doi: 10.11949/0438-1157.20220399

• 催化、动力学与反应器 • 上一篇    下一篇

提升管反应器介尺度结构影响规律的数值模拟研究

石孝刚(),王成秀,高金森,蓝兴英()   

  1. 中国石油大学(北京) 重质油国家重点实验室,北京 102249
  • 收稿日期:2022-03-22 修回日期:2022-05-11 出版日期:2022-06-05 发布日期:2022-06-30
  • 作者简介:石孝刚(1987—)男,博士,副教授,shixiaogang68@cup.edu.cn|蓝兴英(1977—),女,博士,教授,lanxy@cup.edu.cn
  • 基金资助:
    国家自然科学基金项目(91834303)

Numerical simulation study on influence of mesoscale structure in riser reactor

Xiaogang SHI(),Chengxiu WANG,Jinsen GAO,Xingying LAN()   

  1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
  • Received:2022-03-22 Revised:2022-05-11 Published:2022-06-05 Online:2022-06-30

摘要:

提升管反应器存在典型的颗粒聚团介尺度结构,其分布特性对气固流动、反应有重要影响,对介尺度结构影响规律进行分析有助于为反应器的设计与优化操作提供基础信息。采用基于能量最小多尺度(EMMS)方法的曳力模型建立了提升管气固两相流动模型,考虑了颗粒聚团对气固相间动量传递的影响。此外,进一步通过考虑颗粒聚团的存在以及颗粒聚团的非均匀性对化学反应的影响,提出了描述介尺度结构对反应速率影响的修正因子,与气固流动模型进行耦合,建立了基于介尺度结构的流动-反应综合数学模型,并进行了模型验证。进一步应用该模型,对工业催化裂化提升管反应器的流动-反应特性进行了模拟分析。结果表明,该模型可以合理描述提升管气固相互作用,能够预测出壁面附近存在较多介尺度结构的分布特性,由于聚团的存在使得重油组分难以与催化剂充分接触,生成汽柴油的反应速率较低,转化较慢,聚团的分布特性导致靠近边壁处的重油组分浓度较高,汽柴油组分浓度较低;汽柴油在聚团内部的流动阻力较大,在聚团内发生过量的二次反应生成较多焦炭,导致壁面处焦炭浓度较高。与传统基于平均化而未考虑聚团影响的模型相比,基于介尺度结构的模型所预测的汽油收率最佳值与工业实际相接近。因此,基于介尺度结构的流动-反应综合数学模型可以合理描述提升管内进行的流动-反应耦合特性,并能揭示介尺度结构对催化裂化反应过程的影响,有望为工业提升管装置反应终止剂技术的开发提供重要的基础信息。

关键词: 颗粒聚团, 提升管, 介尺度模型, 流化催化裂化, 数值模拟

Abstract:

There exists typical mesoscale structure of particle clusters in riser reactor, and its distribution characteristics have important impacts on gas-solid flow and reaction characteristics. The analysis of the influence of mesoscale structure is helpful to provide basic information for reactor design and optimal operation. In this paper, the gas-solid flow model in the riser is established by using the drag model based on the energy-minimization multi-scale (EMMS) method, and the influence of particle cluster on the momentum transfer between gas and solid is therefore described. In addition, by considering the existence of particle clusters and the influence of the heterogeneity of particle clusters on the chemical reaction, a correction factor describing the influence of mesoscale structure on the reaction rate is proposed, which is coupled with the gas-solid flow model. A combined flow-reaction mathematical model based on mesoscale structure is therefore established. The model is validated against the experimental data. The model was further applied to simulate and analyze the flow-reaction characteristics of an industrial catalytic cracking riser reactor. The results show that the model can reasonably describe the gas-solid interaction in the riser and can predict the distribution characteristics of mesoscale structures near the wall. Due to the existence of clusters, it is difficult for the heavy oil components to fully contact with the catalyst. The distribution characteristics of clusters can lead to the high concentration of heavy oil and low concentration of gasoline and diesel near the wall. Due to the flow resistance in the cluster, excessive secondary reactions of gasoline and diesel occur in the cluster to produce more coke, resulting in higher coke concentration near the wall. Compared with the traditional model based on averaging method, the optimal value of gasoline yield predicted by the present model is closer to the industrial practice. Therefore, the present model can reasonably describe the coupled flow-reaction characteristics in the riser, reveal the influence of mesoscale structure, and is promising in providing important basic information for the development of reaction terminator technology in industrial risers.

Key words: particle cluster, riser, mesoscale model, fluid catalytic cracking, numerical simulation

中图分类号: 

  • TQ

表1

EMMS曳力模型表达式"

项 目方程表达式
曳力模型系数ββ=34Cdεsεgρgug-usdpεg-2.65HD????????????εg0.4150εs2μgεgdp2+1.75εsρgug-usdp????????εg<0.4
曳力系数修正因子HD=AeRe+BeCe
εg>0.997Ae=1Be=1Ce=0
0.997>εg>0.99Ae=0.4243+0.881-11+exp0.9989-εg3×10-51+exp0.9942-εg2.18×10-3Be=1.661×10-3+0.2436exp-0.50.9985-εg1.91×10-32Ce=8.25×10-2-0.0574exp-0.50.9979-εg7.03×10-32
0.99>εg>0.545Ae=49.1698-49.5722εg-0.4896Be=137.6308-21.6308εg13.031Ce=εg-1.0013-6.633×10-2+9.1391εg-1.0013+6.9231εg-1.00132
0.545>εg>0.4Ae=0.8526-0.58461+εg0.432522.6279Be=1Ce=0

表2

颗粒聚团上的平均反应速率和单颗粒上的反应速率的比值"

空隙率气速/(m/s)短轴长短轴比倾角/(°)Hc
一次反应Hc,1二次反应Hc,2
0.830.10.67100.15600.8900
0.830.50.67100.19300.9589
0.8310.67100.21070.9937
0.831.50.67100.22281.0165
0.8320.67100.23251.0339
0.832.50.67100.24091.0484
0.8330.67100.24851.0609
0.9050.5100.45111.1105
0.907.50.5100.52421.1119
0.90100.5100.58281.1073
0.960.50.5100.56381.0498
0.9610.5100.62991.0522

表3

非均匀的颗粒聚团对化学反应速率的影响因子表达式[19]"

Hr表达式εg范围
Hr=4.5484-8.8775εg[0.4,0.4162]
Hr=-42.3887+203.6538εg-239.6766εg2[0.4162,0.4257]
Hr=-34.6239+219.6173εg-446.5862εg2+??????297.1701εg3[0.4257,0.5457]
Hr=0.3667-0.04321εg+0.6543εg2[0.5457,1.0]

图1

模拟对象的装置示意图(a)[26]及其几何结构和网格划分(b)"

表4

模拟对象尺寸和物性"

参数数 值
提升管直径D/m0.076
提升管高度h/m10
颗粒粒径dp/μm76
颗粒密度ρp/(kg/m3)1780
气体密度ρg/(kg/m3)1.1795

图2

提升管内臭氧浓度的轴向分布(Ug=9 m/s,虚线代表基于平均化的模型,实线代表基于介尺度结构的模型)"

图3

提升管内臭氧浓度的径向分布(Ug=9 m/s,虚线代表基于平均化的模型,实线代表基于介尺度结构的模型)"

图4

工业催化裂化提升管反应器示意图"

表5

工业提升管反应器工艺参数"

参 数数值
原料油质量流率/(t/h)152
雾化蒸汽质量流率/(t/h)9.6
预提升蒸汽质量流率/(kg/h)4070
催化剂循环量/(t/h)1156
剂油比7
物料混合温度/℃550

图5

催化裂化反应十四集总动力学模型反应网络"

图6

提升管高度方向催化剂颗粒浓度分布"

图7

催化裂化提升管反应器内的瞬时催化剂颗粒浓度分布"

图8

催化裂化提升管反应器内的油气和催化剂颗粒瞬时温度分布"

图9

提升管高度方向转化率变化"

图10

重油组分浓度分布"

图11

汽油组分浓度分布"

图12

柴油组分浓度分布"

图13

焦炭组分浓度分布"

图14

提升管高度方向上各产物产率变化(实线为基于介尺度结构的模型,虚线为基于平均化的模型)"

1 王成秀, 裴华健, 苏鑫, 等. 密相提升管内颗粒速度与颗粒浓度分布及发展特性[J]. 化学反应工程与工艺, 2020, 36(1): 8-16.
Wang C X, Pei H J, Su X, et al. Particle velocity and solids holdup characteristics and the flow development in a high density circulating fluidized bed riser[J]. Chemical Reaction Engineering and Technology, 2020, 36(1): 8-16.
2 Zhang H, Huang W X, Zhu J X. Gas-solids flow behavior: CFB riser vs. downer[J]. AIChE Journal, 2001, 47(9): 2000-2011.
3 Manyele S V, Pärssinen J H, Zhu J X. Characterizing particle aggregates in a high-density and high-flux CFB riser[J]. Chemical Engineering Journal, 2002, 88(1/2/3): 151-161.
4 Wang J W, Ge W, Li J H. Eulerian simulation of heterogeneous gas-solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description[J]. Chemical Engineering Science, 2008, 63(6): 1553-1571.
5 Rossbach V, Padoin N, Meier H F, et al. Influence of ultrasonic waves on the gas-solid flow and the solids dispersion in a CFB riser: numerical and experimental study[J]. Powder Technology, 2021, 389: 430-449.
6 Jiradilok V, Gidaspow D, Damronglerd S, et al. Kinetic theory based CFD simulation of turbulent fluidization of FCC particles in a riser[J]. Chemical Engineering Science, 2006, 61(17): 5544-5559.
7 Yin L J, Wang S Y, Lu H L, et al. Simulation of effect of catalyst particle cluster on dry methane reforming in circulating fluidized beds[J]. Chemical Engineering Journal, 2007, 131(1/2/3): 123-134.
8 Wang S Y, Yin L J, Lu H L, et al. Simulation of effect of catalytic particle clustering on methane steam reforming in a circulating fluidized bed reformer[J]. Chemical Engineering Journal, 2008, 139(1): 136-146.
9 吕林英, 蓝兴英, 吴迎亚, 等. FCC提升管反应器中颗粒聚团对裂化反应的影响[J]. 化工学报, 2015, 66(8): 2920-2928.
Lyu L Y, Lan X Y, Wu Y Y, et al. Effect of particles cluster on behavior of catalytic cracking reaction in FCC riser[J]. CIESC Journal, 2015, 66(8): 2920-2928.
10 Li J H, Huang W L, Chen J H. Possible roadmap to advancing the knowledge system and tackling challenges from complexity[J]. Chemical Engineering Science, 2021, 237: 116548.
11 Shi Z S, Wang W, Li J H. A bubble-based EMMS model for gas-solid bubbling fluidization[J]. Chemical Engineering Science, 2011, 66(22): 5541-5555.
12 Guo L, Wu J, Li J H. Complexity at mesoscales: a common challenge in developing artificial intelligence[J]. Engineering, 2019, 5(5): 241-253.
13 Cloete S, Amini S, Johansen S T. On the effect of cluster resolution in riser flows on momentum and reaction kinetic interaction[J]. Powder Technology, 2011, 210(1): 6-17.
14 Chalermsinsuwan B, Piumsomboon P, Gidaspow D. Kinetic theory based computation of PSRI riser(Ⅰ): Estimate of mass transfer coefficient[J]. Chemical Engineering Science, 2009, 64(6): 1195-1211.
15 Chalermsinsuwan B, Piumsomboon P, Gidaspow D. Kinetic theory based computation of PSRI riser(Ⅱ): Computation of mass transfer coefficient with chemical reaction[J]. Chemical Engineering Science, 2009, 64(6): 1212-1222.
16 Holloway W, Sundaresan S. Filtered models for reacting gas-particle flows[J]. Chemical Engineering Science, 2012, 82: 132-143.
17 Dong W G, Wang W, Li J H. A multiscale mass transfer model for gas-solid riser flows(Ⅰ):Sub-grid model and simple tests[J]. Chemical Engineering Science, 2008, 63(10): 2798-2810.
18 Hong K, Shi Z S, Wang W, et al. A structure-dependent multi-fluid model (SFM) for heterogeneous gas-solid flow[J]. Chemical Engineering Science, 2013, 99: 191-202.
19 Liu C F, Wang W, Zhang N, et al. Structure-dependent multi-fluid model for mass transfer and reactions in gas-solid fluidized beds[J]. Chemical Engineering Science, 2015, 122: 114-129.
20 Huang Z Q, Wang L X, Zhou Q. Development of a filtered reaction rate model for reactive gas-solid flows based on fine-grid simulations[J]. AIChE Journal, 2021, 67(5): e17185.
21 Zou Z, Yan D, Zhu J Y, et al. Simulation of the fluid–solid noncatalytic reaction based on the structure-based mass-transfer model: shrinking core reaction[J]. Industrial & Engineering Chemistry Research, 2020, 59(40): 17729-17739.
22 Wu Y Y, Peng L, Qin L Q, et al. Validation and application of CPFD models in simulating hydrodynamics and reactions in riser reactor with Geldart A particles[J]. Powder Technology, 2018, 323: 269-283.
23 Wu Y Y, Shi X G, Wang C X, et al. CPFD simulation of hydrodynamics, heat transfer, and reactions in a downer reactor for coal pyrolysis with binary particles[J]. Energy & Fuels, 2019, 33(12): 12295-12307.
24 Wang M, Lan X Y, Wang C X, et al. Numerical simulation of the pilot-scale high-density circulating fluidized bed riser[J]. Industrial & Engineering Chemistry Research, 2021, 60(7): 3184-3197.
25 Shi X G, Wu Y Y, Wang M, et al. Physicochemical processes occurring inside clusters consisting of FCC catalyst particles[J]. Chemical Engineering & Technology, 2017, 40(5): 847-853.
26 Wang C. High density gas-solids circulating fluidized bed riser and downer reactors[D]. Ontario :The University of Western Ontario, 2013.
27 Gidaspow D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. USA: Academic Press, 1994.
28 Lan X Y, Xu C M, Wang G, et al. CFD modeling of gas-solid flow and cracking reaction in two-stage riser FCC reactors[J]. Chemical Engineering Science, 2009, 64(17): 3847-3858.
[1] 代佳琳, 毕唯东, 雍玉梅, 陈文强, 莫晗旸, 孙兵, 杨超. 热物性对混合型CPCMs固液相变特性影响模拟研究[J]. 化工学报, 2023, 74(5): 1914-1927.
[2] 赵健, 周兴超, 夏丹, 董航. 机械搅拌对原油储罐射流加热过程传热特性的影响规律研究[J]. 化工学报, 2023, 74(5): 1982-1999.
[3] 袁子涵, 王淑彦, 邵宝力, 谢磊, 陈曦, 马一玫. 基于幂律液固曳力模型流化床内湿颗粒流动特性的研究[J]. 化工学报, 2023, 74(5): 2000-2012.
[4] 丁俊华, 俞树荣, 王世鹏, 洪先志, 包鑫, 丁雪兴. 多重效应下超高速干气密封流场模拟及密封性能试验[J]. 化工学报, 2023, 74(5): 2088-2099.
[5] 王泽栋, 石至平, 刘丽艳. 考虑气泡非均匀耗散的矩形反应器声流场数值模拟及结构优化[J]. 化工学报, 2023, 74(5): 1965-1973.
[6] 周艾然, 陆平, 夏建辉, 李冬勤, 郭杰, 杜明, 董立春. 氯化钛白氧化反应器结疤问题分析及数值模拟[J]. 化工学报, 2023, 74(4): 1499-1508.
[7] 刘庆超, 贾辉, 许逸飞, 路娜, 尹延梅, 王捷. 基于FBG力学传感的曝气生物滤池中剪切力分布研究[J]. 化工学报, 2023, 74(4): 1755-1763.
[8] 任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538.
[9] 王晓萱, 胡晓红, 陆雨楠, 王士勇, 凡凤仙. 旋转膜过滤器内部流动特性数值模拟[J]. 化工学报, 2023, 74(4): 1489-1498.
[10] 李新亚, 邢雷, 蒋明虎, 赵立新. 倒锥注气强化井下油水分离水力旋流器性能研究[J]. 化工学报, 2023, 74(3): 1134-1144.
[11] 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312.
[12] 熊昊, 梁潇予, 张晨曦, 白浩隆, 范晓宇, 魏飞. 重质油直接制化工品:多级逆流下行催化裂解技术[J]. 化工学报, 2023, 74(1): 86-104.
[13] 仇鹏, 韩洋, 许建良, 王辅臣, 代正华. 用于预测气流床煤气化的EDC模型参数研究[J]. 化工学报, 2023, 74(1): 428-437.
[14] 王永倩, 王平, 程康, 毛晨林, 刘文锋, 尹智成, Ferrante Antonio. 氨气/甲烷贫预混旋转湍流火焰稳定性及NO生成[J]. 化工学报, 2022, 73(9): 4087-4094.
[15] 郎雪梅, 姚柳眉, 樊栓狮, 李刚, 王燕鸿. 多孔材料中甲烷水合物生成的传热数值模拟研究[J]. 化工学报, 2022, 73(9): 3851-3860.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!