化工学报 ›› 2022, Vol. 73 ›› Issue (12): 5384-5393.DOI: 10.11949/0438-1157.20221419
谢广烁1(), 张斯亮2, 王家瑞1, 肖娟1(), 王斯民1
收稿日期:
2022-10-28
修回日期:
2022-11-29
出版日期:
2022-12-05
发布日期:
2023-01-17
通讯作者:
肖娟
作者简介:
谢广烁(1999—),男,硕士研究生,1792646843@qq.com
基金资助:
Guangshuo XIE1(), Siliang ZHANG2, Jiarui WANG1, Juan XIAO1(), Simin WANG1
Received:
2022-10-28
Revised:
2022-11-29
Online:
2022-12-05
Published:
2023-01-17
Contact:
Juan XIAO
摘要:
传热管表面的污垢不仅阻碍热量传递,还会增加流体流动阻力,导致传热管使用寿命缩短和经济损失。通过在传热管内插入转子可有效实现传热强化和在线除垢抑垢,研究了不同流速下自转式内置转子圆管内的流场和颗粒污垢特性,采用多重参考系模型(MRF)模拟转子在不同流速下的转动,基于欧拉-欧拉液固两相流模型加载UDF得到管内的颗粒污垢特性。结果表明,内置转子传热管内呈螺旋流动,周向速度和径向速度提高,从而增强管壁的换热性能。随着流速从0.15 m/s增加到0.35 m/s,自转式内置转子圆管内颗粒稳定沉积率增加了136.5%,且增加的幅度逐渐变大;但污垢热阻渐近值减少了48.3%,且达到污垢渐近值所需的时间缩短。在此基础上对比固定转子发现,当流速为0.15~0.25 m/s,转子固定时的污垢热阻更小,而当流速为0.30~0.35 m/s,转子转动时的污垢热阻更小。研究可为内置转子的选型和设计提供参考。
中图分类号:
谢广烁, 张斯亮, 王家瑞, 肖娟, 王斯民. 自转式内置转子颗粒污垢抑制特性研究[J]. 化工学报, 2022, 73(12): 5384-5393.
Guangshuo XIE, Siliang ZHANG, Jiarui WANG, Juan XIAO, Simin WANG. Study on anti-fouling characteristics of particulate fouling using built-in self-rotating rotors[J]. CIESC Journal, 2022, 73(12): 5384-5393.
物性 | 密度/ (kg/m3) | 比热容/ (J/(kg·K)) | 热导率/ (W/(m·K)) | 动力黏度/(Pa·s) |
---|---|---|---|---|
水 | 998.2 | 4182 | 0.6 | 0.001003 |
氧化镁 | 1740 | 873 | 25.0 | — |
铝 | 2719 | 871 | 202.4 | — |
钢 | 8030 | 502.48 | 16.3 | — |
表1 介质物性参数
Table 1 Physical parameters of the medium
物性 | 密度/ (kg/m3) | 比热容/ (J/(kg·K)) | 热导率/ (W/(m·K)) | 动力黏度/(Pa·s) |
---|---|---|---|---|
水 | 998.2 | 4182 | 0.6 | 0.001003 |
氧化镁 | 1740 | 873 | 25.0 | — |
铝 | 2719 | 871 | 202.4 | — |
钢 | 8030 | 502.48 | 16.3 | — |
固定区域 网格尺寸/mm | 旋转区域 网格尺寸/mm | 网格 数量/个 | 稳定沉积率×104/ (kg/(m2·s)) | 相对 变化/% |
---|---|---|---|---|
5.0 | 1.6 | 344134 | 2.83 | — |
5.0 | 1.0 | 1728899 | 2.30 | 18.7 |
5.0 | 0.8 | 2034997 | 1.94 | 15.7 |
5.0 | 0.6 | 3203782 | 1.75 | 9.8 |
5.0 | 0.5 | 4923102 | 1.69 | 3.4 |
表2 网格无关性测试
Table 2 Grid independence verification
固定区域 网格尺寸/mm | 旋转区域 网格尺寸/mm | 网格 数量/个 | 稳定沉积率×104/ (kg/(m2·s)) | 相对 变化/% |
---|---|---|---|---|
5.0 | 1.6 | 344134 | 2.83 | — |
5.0 | 1.0 | 1728899 | 2.30 | 18.7 |
5.0 | 0.8 | 2034997 | 1.94 | 15.7 |
5.0 | 0.6 | 3203782 | 1.75 | 9.8 |
5.0 | 0.5 | 4923102 | 1.69 | 3.4 |
1 | Epstein N. Fouling in heat exchangers[C]// Proceedings of the Sixth International Heat Transfer Conference. Danbury, USA: Begel House Inc., 1978: 235-253. |
2 | Sheikholeslami R. Composite fouling of heat transfer equipment in aqueous media—a review[J]. Heat Transfer Engineering, 2000, 21(3): 34-42. |
3 | Steinhagen R, Steinhagen H M, Maani K. Problems and costs due to heat exchanger fouling in new zealand industries[J]. Heat Transfer Engineering, 1993, 14(1): 19-30. |
4 | Shen C, Wang Y, Tang Z B, et al. Experimental study on the interaction between particulate fouling and precipitation fouling in the fouling process on heat transfer tubes[J]. International Journal of Heat and Mass Transfer, 2019, 138: 1238-1250. |
5 | 殷小明, 陈艺, 宋友立, 等. 换热器内结垢特性研究进展[J]. 化工装备技术, 2021, 42(6): 6. |
Yin X M, Chen Y, Song Y L, et al. Research progress of fouling characteristics in heat exchangers[J]. Chemical Equipment Technology, 2021, 42(6): 6. | |
6 | 刘洪涛, 张力. 微细颗粒壁面沉积的数值研究[J]. 工程热物理学报, 2010, 31(3): 431-434. |
Liu H T, Zhang L. Numerical investigation of micro-particle deposition on wall[J]. Journal of Engineering Thermophysics, 2010, 31(3): 431-434. | |
7 | 贺启滨, 王沩, 高乃平, 等. 应用随机轨道模型研究颗粒在通风管道内的沉积[J]. 建筑科学, 2011, 27(4): 104-108. |
He Q B, Wang W, Gao N P, et al. Using discrete random walk model to study the particle deposition in ventilation duct[J]. Building Science, 2011, 27(4): 104-108. | |
8 | 李伟. 通风管道中细微粉尘的湍流沉积规律[J]. 中国粉体技术, 2014, 20(2): 56-60. |
Li W. Turbulent deposition rule of fine dust in ventilation ducts[J]. China Powder Science and Technology, 2014, 20(2): 56-60. | |
9 | Han H, He Y L, Tao W Q, et al. A parameter study of tube bundle heat exchangers for fouling rate reduction[J]. International Journal of Heat and Mass Transfer, 2014, 72: 210-221. |
10 | Jiang H, Lu L, Sun K. Simulation of particle deposition in ventilation duct with a particle–wall impact model[J]. Building and environment, 2010, 45(5): 1184-1191. |
11 | 张宁, 李楠, 杨启容, 等. 换热面上颗粒污垢生长特性的数值模拟研究[J]. 青岛大学学报: 工程技术版, 2018, 33(1): 75-79+86. |
Zhang N, Li N, Yang Q R, et al. Numerical simulation of particle fouling growth characteristics on heat exchange surface[J]. Journal of Qingdao University: Engineering and Technology Edition, 2018, 33(1): 75-79+86. | |
12 | Kasper R, Turnow J, Kornev N. Numerical modeling and simulation of particulate fouling of structured heat transfer surfaces using a multiphase Euler-Lagrange approach[J]. International Journal of Heat & Mass Transfer, 2017, 115: 932-945. |
13 | Tang S, Wang F, Ren Q, et al. Fouling characteristics analysis and morphology prediction of heat exchangers with a particulate fouling model considering deposition and removal mechanisms[J]. Fuel, 2017, 203: 725-738. |
14 | Seyyedbagheri H, Mirzayi B. Eulerian model to predict asphaltene deposition process in turbulent oil transport pipelines[J]. Energy Fuels, 2017, 31: 8061-8071. |
15 | Vasquez E S, Walters K B, Walters D K. Analysis of particle transport and deposition of micron-sized particles in a 90 bend using a two-fluid Eulerian-Eulerian approach[J]. Aerosol Science and Technology, 2015, 49(9): 692-704. |
16 | Ni P, Jonsson L T I, Ersson M, et al. The use of an enhanced Eulerian deposition model to investigate nozzle clogging during continuous casting of steel[J]. Metallurgical and Materials Transactions B, 2014, 45(6): 2414-2424. |
17 | Ni P, Jonsson L T I, Ersson M, et al. On the deposition of particles in liquid metals onto vertical ceramic walls[J]. International Journal of Multiphase Flow, 2014, 62: 152-160. |
18 | 张琳, 钱红卫, 宣益民, 等. 自转螺旋纽带管内三维流动与传热数值模拟[J]. 化工学报, 2005, 56(9): 1633-1638. |
Zhang L, Qian H W, Xuan Y M, et al. 3D numerical simulation of fluid flow and heat transfer in self-rotating twisted tape inserted tube[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(9): 1633-1638. | |
19 | 张琳, 钱红卫, 俞秀民, 等. 内置旋转扭带换热管的传热强化机理[J]. 机械工程学报, 2007, 43(1): 140-143. |
Zhang L, Qian H W, Yu X M, et al. Heat transfer enhancement mechanism of heat exchange tubes with rotating twisted tape insert[J]. Chinese Journal of Mechanical Engineering, 2007, 43(1): 140-143. | |
20 | Zhang S, Lu L, Dong C, et al. Performance evaluation of a double-pipe heat exchanger fitted with self-rotating twisted tapes[J]. Applied Thermal Engineering, 2019, 158: 113770. |
21 | Arasteh H, Rahbari A, Mashayekhi R, et al. Effect of pitch distance of rotational twisted tape on the heat transfer and fluid flow characteristics[J]. International Journal of Thermal Sciences, 2021, 170(1): 106966. |
22 | 姜鹏, 阎华, 关昌峰, 等. 内置转子圆管内CaCO3污垢形成过程的数值模拟[J]. 北京化工大学学报: 自然科学版, 2013, 40(3): 1-5. |
Jiang P, Yan H, Guan C F, et al. Numerical simulation of the fouling process in a circular tube with inserted rotors[J]. Journal of Beijing University of Chemical Technology: Natural Science, 2013, 40(3): 1-5. | |
23 | 张震, 关昌峰, 何长江, 等. 螺旋叶片转子强化管抗污垢性能的数值模拟[J]. 化工进展, 2013, 32(11): 2562-2568. |
Zhang Z, Guan C F, He C J, et al. Numerical studies on anti-dirt performance of the enhanced tube with helical blade rotors[J]. Chemical Industry and Engineering Progress, 2013, 32(11): 2562-2568. | |
24 | 刘鑫. 组合转子抑垢性能研究[D]. 北京: 北京化工大学, 2017. |
Liu X. Study on the anti-fouling characteristics of assembled rotors[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
25 | Wood N B. The mass transfer of particles and acid vapour to cooled surfaces[J]. Journal of the Institute of Energy, 1981, 76: 76-93. |
26 | 于晓燕. 管内微米氧化镁颗粒污垢特性的数值模拟[D]. 吉林: 东北电力大学, 2019. |
Yu X Y. Numerical simulation of micron magnesia oxide particles fouling characteristics in tubes[D]. Jilin: Northeast Electric Power University, 2019. | |
27 | Shaw D A, Hanratty T J. Turbulent mass transfer rates to a wall for large Schmidt numbers[J]. AIChE Journal, 1977, 23(1): 28-37. |
28 | Mcnab G S, Meisen A. Thermophoresis in liquids[J]. Journal of Colloid & Interface Science, 1973, 44(2): 339-346. |
29 | Majlesara M, Salmanzadeh M, Ahmadi G. A model for particles deposition in turbulent inclined channels[J]. Journal of Aerosol Science, 2013, 64(3): 37-47. |
30 | Han Y, Hu Y, Qian F. Effects of air temperature and humidity on particle deposition[J]. Chemical Engineering Research and Design, 2011, 89(10): 2063-2069. |
31 | Nae-Hyun K, Webb R L. Particulate fouling of water in tubes having a two-dimensional roughness geometry[J]. International Journal of Heat and Mass Transfer, 1991, 34(11): 2727-2738. |
32 | 张琳. 内置旋转扭带强化传热机理及清洗动力学研究[D]. 南京: 南京理工大学, 2006. |
Zhang L. Investigation on enhanced heat transfer mechanism and cleaning dynamics of the rotating twisted tape[D]. Nanjing: Nanjing University of Science and Technology, 2006. | |
33 | 张宁. 换热面上颗粒污垢成垢机理的数值模拟与实验研究[D]. 青岛: 青岛大学, 2018. |
Zhang N. Numerical simulation and experimental study on scaling mechanism of particle fouling on heat exchange surface[D]. Qingdao: Qingdao University, 2018. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[5] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[6] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[7] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[8] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[9] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[12] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[13] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
[14] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[15] | 郑玉圆, 葛志伟, 韩翔宇, 王亮, 陈海生. 中高温钙基材料热化学储热的研究进展与展望[J]. 化工学报, 2023, 74(8): 3171-3192. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 141
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 284
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||