化工学报 ›› 2023, Vol. 74 ›› Issue (1): 74-85.DOI: 10.11949/0438-1157.20221080
覃瑶(), 张禹萌, 潘雪玲, 王文强, 戴正兴, 朱育丹(), 陆小华()
收稿日期:
2022-08-01
修回日期:
2022-09-14
出版日期:
2023-01-05
发布日期:
2023-03-20
通讯作者:
朱育丹,陆小华
作者简介:
覃瑶 (1993—),男,博士研究生,qy1993@njtech.edu.cn
基金资助:
Yao QIN(), Yumeng ZHANG, Xueling PAN, Wenqiang WANG, Zhengxing DAI, Yudan ZHU(), Xiaohua LU()
Received:
2022-08-01
Revised:
2022-09-14
Online:
2023-01-05
Published:
2023-03-20
Contact:
Yudan ZHU, Xiaohua LU
摘要:
纳米限域空间中分子的传递是新一代化工过程的共性问题。限域空间引入界面润湿性与限域自由度,导致固体-流体受到的非对称相互作用显著,使得流体状态大幅度偏离均一主体相,经典传递理论不再适用。面向限域的传递理论的缺失,已不能满足现代化工发展的需求。本文综述本团队及前沿的限域传递研究工作,并基于统计力学与非平衡热力学方法进行分析,发现前沿研究分别涵盖三个角度:新自由度下分子间相互作用力决定流体反常状态,反常状态描述流体限域传递物性,反常传递物性描述限域传递阻力实现通量描述。针对三个角度,总结出限域传递阻力雏形,并从三个角度对限域热点工作初探分析,以限域状态为起点,将三个角度贯通是发展限域传递模型的方向,进而为现代化工发展基础数据和模型。
中图分类号:
覃瑶, 张禹萌, 潘雪玲, 王文强, 戴正兴, 朱育丹, 陆小华. 限域传递机制初探:以限域状态为切入点描述传递阻力[J]. 化工学报, 2023, 74(1): 74-85.
Yao QIN, Yumeng ZHANG, Xueling PAN, Wenqiang WANG, Zhengxing DAI, Yudan ZHU, Xiaohua LU. Preliminary study on mechanism of transfer in confined space: description of confined transfer resistance based on confined fluid state[J]. CIESC Journal, 2023, 74(1): 74-85.
图1 基于体相自由度构建分子间相互作用构建普化自扩散系数预测模型[35]
Fig.1 The self-diffusion coefficient described by the generalized self-diffusion coefficient equation based on the fluid properties and molecular interaction[35]
图4 CO2在界面担载离子液体膜上传递通量和阻力比例与离子液体膜厚关系[51,53]
Fig.4 The relationship between the mass transfer rate and the resistance varying with the IL film thickness[51,53]
流体、界面类型及受限尺寸 | 反常现象 | 相态变化 | 文献 |
---|---|---|---|
流体:水 界面类型:碳圆形孔 d=2.5σ、3σ、5σ | 随着受限尺寸的减小,气液相共存区缩小,临界温度下降 | 气-液相之间 | [ |
流体:水 界面类型:石墨烯 d=0.79、0.99、1.69、4.5 nm | 水形成特殊的三维水簇结构网络 | — | [ |
流体:水 界面类型:羟基化二氧化硅、石墨烯 d=0.4~1.6 nm | 液相、气相和双层冰等状态转变 | 气-液-固三相 | [ |
流体:水 界面类型:氧化硅 d=0.6~1.2 nm | d=0.8 nm时,双层冰和三层非均质水的密度增加,一阶相变发生 | 液-固相之间 | [ |
流体:冰 界面类型:碳纳米管 d=1.1~1.4 nm | d=1.19 nm的碳纳米管内一阶冰相变化到六角形和七边形的纳米管形状, 并且可以连续转变成固态方形结构或五角冰纳米管形状 | 液-固相之间 | [ |
流体:冰 界面类型:石墨烯 d=0.7~0.9 nm | d=0.78 nm的石墨烯狭缝中出现双层极低密度无定形冰的新状态 | 液-固相之间 | [ |
流体:甲烷、乙烷、丁烷、正丁烷 界面类型:石墨烯、云母 d= 0.5~1.5 nm | 随着受限尺寸变小,气液表面张力下降,饱和蒸气压增大 | 气-液相之间 | [ |
流体:水 界面类型:石墨烯、云母 d=1~6 nm | 随着尺寸变小,水的气液相临界温度下降,水的密度呈非均一分布, 气液相共存 | 气-液相之间 | [ |
流体:甲烷、乙烷 界面类型:石墨烯 d=4、7、10 nm | 随着受限尺寸的减小,气液相共存区缩小,临界温度下降 | 气-液相之间 | [ |
流体:辛烷、癸烷 界面类型:碳纳米管 d=4.3、38.1 nm | 当d=4.3 nm时,出现两个不同的泡点,气液相共存 | 气-液相之间 | [ |
表1 纳米尺度下的相行为代表性工作
Table 1 The representative of phase behavior at the nanoscale
流体、界面类型及受限尺寸 | 反常现象 | 相态变化 | 文献 |
---|---|---|---|
流体:水 界面类型:碳圆形孔 d=2.5σ、3σ、5σ | 随着受限尺寸的减小,气液相共存区缩小,临界温度下降 | 气-液相之间 | [ |
流体:水 界面类型:石墨烯 d=0.79、0.99、1.69、4.5 nm | 水形成特殊的三维水簇结构网络 | — | [ |
流体:水 界面类型:羟基化二氧化硅、石墨烯 d=0.4~1.6 nm | 液相、气相和双层冰等状态转变 | 气-液-固三相 | [ |
流体:水 界面类型:氧化硅 d=0.6~1.2 nm | d=0.8 nm时,双层冰和三层非均质水的密度增加,一阶相变发生 | 液-固相之间 | [ |
流体:冰 界面类型:碳纳米管 d=1.1~1.4 nm | d=1.19 nm的碳纳米管内一阶冰相变化到六角形和七边形的纳米管形状, 并且可以连续转变成固态方形结构或五角冰纳米管形状 | 液-固相之间 | [ |
流体:冰 界面类型:石墨烯 d=0.7~0.9 nm | d=0.78 nm的石墨烯狭缝中出现双层极低密度无定形冰的新状态 | 液-固相之间 | [ |
流体:甲烷、乙烷、丁烷、正丁烷 界面类型:石墨烯、云母 d= 0.5~1.5 nm | 随着受限尺寸变小,气液表面张力下降,饱和蒸气压增大 | 气-液相之间 | [ |
流体:水 界面类型:石墨烯、云母 d=1~6 nm | 随着尺寸变小,水的气液相临界温度下降,水的密度呈非均一分布, 气液相共存 | 气-液相之间 | [ |
流体:甲烷、乙烷 界面类型:石墨烯 d=4、7、10 nm | 随着受限尺寸的减小,气液相共存区缩小,临界温度下降 | 气-液相之间 | [ |
流体:辛烷、癸烷 界面类型:碳纳米管 d=4.3、38.1 nm | 当d=4.3 nm时,出现两个不同的泡点,气液相共存 | 气-液相之间 | [ |
流体、界面类型 及受限尺寸 | 反常现象 | 机制解释 | 解释机制 所用模型 | 文献 |
---|---|---|---|---|
流体:氦气、氢气、氮气等 有机溶剂;水 界面类型:GO 受限尺寸:约1 nm | 水分子以超快速度渗透过狭缝宽度为1 nm的GO膜,流速约为He的1010倍 | 考虑滑移长度为10~100 nm范围的Hagen-Poiseuille方程能够合理描述水的传输通量,即滑移长度的增加,产生了无摩擦流动,解释了水的快速传输机制 | 滑移修正的HP 方程 | [ |
流体:苯甲酸、DMSO、 甲苯、CuCl2、MgCl2、NaCl、丙醇、甲苯、 辛醇等 界面类型:GO 受限尺寸:层间距0.34 nm,孔径0.9~1.3 nm | 小离子和有机分子可以快速渗透而大的离子和有机分子无法渗透过孔径极小的GO膜 | 结合分子模拟构象分析,水合半径大于0.45 nm的渗透受到通道内两层水区域的限制,水合离子不易脱水,而水合半径小于0.45 nm的水合离子位阻效应更小,解释了精确离子筛分特性 | Fick定律 | [ |
流体:氦气、水 界面类型:GO 受限尺寸:层间距0.34 nm | 水在层间距为0.34 nm的通道内具有超快传输速度,达到1 m·s-1 | 考虑了超高渗透压以及滑移修正的Hagen-Poiseuille方程能够合理描述水的传输通量,即超高渗透压以及滑移长度的增加,解释了水的快速传输机制 | 含有压力修正和滑移修正项的HP方程 | [ |
流体:KCl、AlCl3溶液等;水 界面类型:GO、h-BN、MoS2 受限尺寸:0.66~0.67 nm | 半径大于埃米级通道尺寸的水合离子仍然可以以较低的速度进行传输和渗透 | 通过考虑了离子有效体积贡献和表面电荷贡献的总电导方程,解释了大于二维通道的尺寸水合离子可以以较低的速度进行传输和渗透 | 离子有效体积贡献和表面电荷贡献的电导方程 | [ |
流体:氦气 界面类型:GO、 h-BN、MoS2 受限尺寸:1.4 nm | 气体分子(He)在受限尺寸为1.4 nm二维通道中的传输速度极快,表现出近似于无阻碍的“弹道”(Ballistic)输运特征 | 考虑漫反射的Knudsen扩散理论(计算结果与实验值相差几个数量级),考虑漫反射和镜面反射的弹道输运理论能够合理描述He的传输,解释其快速传输机制是由于产生大量的镜面反射 | 同时考虑漫反射和镜面反射的弹道(Ballistic)输运理论 | [ |
流体:水 界面类型:GO 受限尺寸:1 nm | 在GO膜中制造导电细丝实现水的超快渗透到完全堵塞精确控制——调控水的弹道输运 | 考虑漫反射的Knudsen扩散理论(计算结果与实验值相差几个数量级),考虑漫反射和镜面反射的弹道输运理论能够合理描述He的传输,解释其快速传输机制是由于产生大量的镜面反射 | 同时考虑漫反射和镜面反射的弹道(Ballistic)输运理论 | [ |
流体:水 界面类型:h-BN 受限尺寸:1~1.4 nm | 首次通过实验证明了1 nm h-BN通道中,界面水的介电常数在2左右,远低于普通环境中水的介电常数(约80) | 通过与光学频率下的介电常数测定比较,结合模拟结果,发现偶极作用以及氢键作用被抑制对于介电常数减少的贡献,解释了受限水的超低介电常数成因主要归因于变化不大的电子贡献 | 介电常数是离子传递模型如Poisson-Boltzmann方程等的重要参数 | [ |
流体:水、质子H+、离子 水溶液 界面类型:GO、h-BN 受限尺寸:层间距0.34 nm | 使用石墨烯或h-BN作为间隔层制成的致密空腔,允许单层水的存在,但阻碍所有水合离子的通过。只有质子H⁺能够通过这种毛细血管内的单层水扩散通道 | 水合离子由于位阻效应无法通过。通过Grotthuss机制,解释了质子H+的传输,其能够在水分子间跳跃且不需要随身携带大水化壳层 | Grotthuss机制:质子通过氢键和分子重排的方式实现质子的跳变 Nernst方程 | [ |
表2 纳米受限反常现象及其机制解释的代表性工作
Table 2 Abnormal phenomena and corresponding physical mechanisms of fluid under nanoconfinement
流体、界面类型 及受限尺寸 | 反常现象 | 机制解释 | 解释机制 所用模型 | 文献 |
---|---|---|---|---|
流体:氦气、氢气、氮气等 有机溶剂;水 界面类型:GO 受限尺寸:约1 nm | 水分子以超快速度渗透过狭缝宽度为1 nm的GO膜,流速约为He的1010倍 | 考虑滑移长度为10~100 nm范围的Hagen-Poiseuille方程能够合理描述水的传输通量,即滑移长度的增加,产生了无摩擦流动,解释了水的快速传输机制 | 滑移修正的HP 方程 | [ |
流体:苯甲酸、DMSO、 甲苯、CuCl2、MgCl2、NaCl、丙醇、甲苯、 辛醇等 界面类型:GO 受限尺寸:层间距0.34 nm,孔径0.9~1.3 nm | 小离子和有机分子可以快速渗透而大的离子和有机分子无法渗透过孔径极小的GO膜 | 结合分子模拟构象分析,水合半径大于0.45 nm的渗透受到通道内两层水区域的限制,水合离子不易脱水,而水合半径小于0.45 nm的水合离子位阻效应更小,解释了精确离子筛分特性 | Fick定律 | [ |
流体:氦气、水 界面类型:GO 受限尺寸:层间距0.34 nm | 水在层间距为0.34 nm的通道内具有超快传输速度,达到1 m·s-1 | 考虑了超高渗透压以及滑移修正的Hagen-Poiseuille方程能够合理描述水的传输通量,即超高渗透压以及滑移长度的增加,解释了水的快速传输机制 | 含有压力修正和滑移修正项的HP方程 | [ |
流体:KCl、AlCl3溶液等;水 界面类型:GO、h-BN、MoS2 受限尺寸:0.66~0.67 nm | 半径大于埃米级通道尺寸的水合离子仍然可以以较低的速度进行传输和渗透 | 通过考虑了离子有效体积贡献和表面电荷贡献的总电导方程,解释了大于二维通道的尺寸水合离子可以以较低的速度进行传输和渗透 | 离子有效体积贡献和表面电荷贡献的电导方程 | [ |
流体:氦气 界面类型:GO、 h-BN、MoS2 受限尺寸:1.4 nm | 气体分子(He)在受限尺寸为1.4 nm二维通道中的传输速度极快,表现出近似于无阻碍的“弹道”(Ballistic)输运特征 | 考虑漫反射的Knudsen扩散理论(计算结果与实验值相差几个数量级),考虑漫反射和镜面反射的弹道输运理论能够合理描述He的传输,解释其快速传输机制是由于产生大量的镜面反射 | 同时考虑漫反射和镜面反射的弹道(Ballistic)输运理论 | [ |
流体:水 界面类型:GO 受限尺寸:1 nm | 在GO膜中制造导电细丝实现水的超快渗透到完全堵塞精确控制——调控水的弹道输运 | 考虑漫反射的Knudsen扩散理论(计算结果与实验值相差几个数量级),考虑漫反射和镜面反射的弹道输运理论能够合理描述He的传输,解释其快速传输机制是由于产生大量的镜面反射 | 同时考虑漫反射和镜面反射的弹道(Ballistic)输运理论 | [ |
流体:水 界面类型:h-BN 受限尺寸:1~1.4 nm | 首次通过实验证明了1 nm h-BN通道中,界面水的介电常数在2左右,远低于普通环境中水的介电常数(约80) | 通过与光学频率下的介电常数测定比较,结合模拟结果,发现偶极作用以及氢键作用被抑制对于介电常数减少的贡献,解释了受限水的超低介电常数成因主要归因于变化不大的电子贡献 | 介电常数是离子传递模型如Poisson-Boltzmann方程等的重要参数 | [ |
流体:水、质子H+、离子 水溶液 界面类型:GO、h-BN 受限尺寸:层间距0.34 nm | 使用石墨烯或h-BN作为间隔层制成的致密空腔,允许单层水的存在,但阻碍所有水合离子的通过。只有质子H⁺能够通过这种毛细血管内的单层水扩散通道 | 水合离子由于位阻效应无法通过。通过Grotthuss机制,解释了质子H+的传输,其能够在水分子间跳跃且不需要随身携带大水化壳层 | Grotthuss机制:质子通过氢键和分子重排的方式实现质子的跳变 Nernst方程 | [ |
1 | Fu Q, Li W X, Yao Y X, et al. Interface-confined ferrous centers for catalytic oxidation[J]. Science, 2010, 328(5982): 1141-1144. |
2 | Shen J, Liu G P, Han Y, et al. Artificial channels for confined mass transport at the sub-nanometre scale[J]. Nature Reviews Materials, 2021, 6(4): 294-312. |
3 | Marbach S, Bocquet L. Osmosis, from molecular insights to large-scale applications[J]. Chemical Society Reviews, 2019, 48(11): 3102-3144. |
4 | Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
5 | Jiao F, Li J J, Pan X L, et al. Selective conversion of syngas to light olefins[J]. Science, 2016, 351(6277): 1065-1068. |
6 | Bird R B, Stewart W E, Lightfoot E N. Transport Phenomena[M]. New York: Wiley, 2007: 75-86. |
7 | Lu X H, Ji Y H, Liu H L. Non-equilibrium thermodynamics analysis and its application for interfacial mass transfer[J]. Scientia Sinica Chimica, 2011, 41(9): 1540-1547. |
8 | Radhakrishnan R, Gubbins K E, Sliwinska-Bartkowiak M. Effect of the fluid-wall interaction on freezing of confined fluids: toward the development of a global phase diagram[J]. The Journal of Chemical Physics, 2000, 112(24): 11048-11057. |
9 | Radhakrishnan R, Gubbins K E, Sliwinska-Bartkowiak M. Global phase diagrams for freezing in porous media[J]. The Journal of Chemical Physics, 2001, 116(3): 1147-1155. |
10 | Shi K H, Santiso E E, Gubbins K E. Can we define a unique microscopic pressure in inhomogeneous fluids? [J]. The Journal of Chemical Physics, 2021, 154(8): 084502. |
11 | Gubbins K E, Long Y, Śliwinska-Bartkowiak M. Thermodynamics of confined nano-phases[J]. The Journal of Chemical Thermodynamics, 2014, 74: 169-183. |
12 | Kataoka T, Tsuru T, Nakao S I, et al. Permeation equations developed for prediction of membrane performance in pervaporation, vapor permeation and reverse osmosis based on the solution-diffusion model[J]. Journal of Chemical Engineering of Japan, 1991, 24(3): 326-333. |
13 | Holt J K, Park H G, Wang Y M, et al. Fast mass transport through sub-2-nanometer carbon nanotubes[J]. Science, 2006, 312(5776): 1034-1037. |
14 | Joshi R K, Carbone P, Wang F C, et al. Precise and ultrafast molecular sieving through graphene oxide membranes[J]. Science, 2014, 343(6172): 752-754. |
15 | Nair R R, Wu H A, Jayaram P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
16 | Wang Y Y, Xu J B, Yang C. Fluid inhomogeneity within nanoslits and deviation from Hagen-Poiseuille flow[J]. AIChE Journal, 2017, 63(2): 834-842. |
17 | Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces[J]. Chemical Society Reviews, 2010, 39(3): 1073-1095. |
18 | Barrat J L, Bocquet L. Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface[J]. Faraday Discussions, 1999, 112: 119-128. |
19 | Bocquet L, Barrat J L. Flow boundary conditions from nano- to micro-scales[J]. Soft Matter, 2007, 3(6): 685-693. |
20 | Daniello R J, Waterhouse N E, Rothstein J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2009, 21(8): 085103. |
21 | Koga K, Gao G T, Tanaka H, et al. Formation of ordered ice nanotubes inside carbon nanotubes[J]. Nature, 2001, 412(6849): 802-805. |
22 | Hummer G, Rasaiah J C, Noworyta J P. Water conduction through the hydrophobic channel of a carbon nanotube[J]. Nature, 2001, 414(6860): 188-190. |
23 | Wang J, Zhu Y, Zhou J, et al. Diameter and helicity effects on static properties of water molecules confined in carbon nanotubes[J]. Physical Chemistry Chemical Physics, 2004, 6(4): 829. |
24 | Cao W, Huang L L, Ma M, et al. Water in narrow carbon nanotubes: roughness promoted diffusion transition[J]. The Journal of Physical Chemistry C, 2018, 122(33): 19124-19132. |
25 | Yang Q, Sun P Z, Fumagalli L, et al. Capillary condensation under atomic-scale confinement[J]. Nature, 2020, 588(7837): 250-253. |
26 | Neek-Amal M, Peeters F M, Grigorieva I V, et al. Commensurability effects in viscosity of nanoconfined water[J]. ACS Nano, 2016, 10(3): 3685-3692. |
27 | Raviv U, Klein J. Fluidity of bound hydration layers[J]. Science, 2002, 297(5586): 1540-1543. |
28 | Li T D, Gao J P, Szoszkiewicz R, et al. Structured and viscous water in subnanometer gaps[J]. Physical Review B, 2007, 75(11): 115415. |
29 | Zhu Y D, Zhang L Z, Lu X H, et al. Flow resistance analysis of nanoconfined water in silt pores by molecular simulations: effect of pore wall interfacial properties[J]. Fluid Phase Equilibria, 2014, 362: 235-241. |
30 | Tretheway D C, Meinhart C D. Apparent fluid slip at hydrophobic microchannel walls[J]. Physics of Fluids, 2002, 14(3): L9-L12. |
31 | 胡英. 应用统计学: 流体物性的研究基础[M]. 北京: 化学工业出版社, 1990. |
Hu Y. Applied Statistics: Research Basis of Fluid Physical Properties [M]. Beijing: Chemical Industry Press, 1990. | |
32 | Chapman S, Cowling T G. The Mathematical Theory of Non-uniform Gases[M]. Cambridge: Cambridge University Press, 1970. |
33 | Speedy R J. Diffusion in the hard sphere fluid[J]. Molecular Physics, 1987, 62(2): 509-515. |
34 | Speedy R J, Prielmeier F X, Vardag T, et al. Diffusion in simple fluids[J]. Molecular Physics, 1989, 66(3): 577-590. |
35 | Zhu Y, Lu X H, Zhou J, et al. Prediction of diffusion coefficients for gas, liquid and supercritical fluid: application to pure real fluids and infinite dilute binary solutions based on the simulation of Lennard-Jones fluid[J]. Fluid Phase Equilibria, 2002, 194/195/196/197: 1141-1159. |
36 | Liu H Q, Silva C M, Macedo E A. Unified approach to the self-diffusion coefficients of dense fluids over wide ranges of temperature and pressure—hard-sphere, square-well, Lennard-Jones and real substances[J]. Chemical Engineering Science, 1998, 53(13): 2403-2422. |
37 | Zhou J, Lu X H, Wang Y R, et al. Molecular dynamics investigation on the infinite dilute diffusion coefficients of organic compounds in supercritical carbon dioxide[J]. Fluid Phase Equilibria, 2000, 172(2): 279-291. |
38 | Wu N H, Ji X Y, An R, et al. Generalized Gibbs free energy of confined nanoparticles[J]. AIChE Journal, 2017, 63(10): 4595-4603. |
39 | Wu N, Ji X, Xie W, et al. Confinement phenomenon effect on the CO2 absorption working capacity in ionic liquids immobilized into porous solid supports[J]. Langmuir, 2017, 33(42): 11719-11726. |
40 | Qiao C Z, Zhao S L, Liu H L, et al. Connect the thermodynamics of bulk and confined fluids: confinement-adsorption scaling[J]. Langmuir, 2019, 35(10): 3840-3847. |
41 | Dzugutov M. A universal scaling law for atomic diffusion in condensed matter[J]. Nature, 1996, 381(6578): 137-139. |
42 | Giovambattista N, Rossky P J, Debenedetti P G. Phase transitions induced by nanoconfinement in liquid water[J]. Physical Review Letters, 2009, 102(5): 050603. |
43 | Wei M J, Zhou J, Lu X H, et al. Diffusion of water molecules confined in slits of rutile TiO2(1 1 0) and graphite(0 0 0 1)[J]. Fluid Phase Equilibria, 2011, 302(1/2): 316-320. |
44 | Chiavazzo E, Fasano M, Asinari P, et al. Scaling behaviour for the water transport in nanoconfined geometries[J]. Nature Communications, 2014, 5: 3565. |
45 | An R, Huang L, Long Y, et al. Liquid-solid nanofriction and interfacial wetting[J]. Langmuir, 2016, 32(3): 743-750. |
46 | Huang X Z, Wu J, Zhu Y D, et al. Flow-resistance analysis of nano-confined fluids inspired from liquid nano-lubrication: a review[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1552-1562. |
47 | Zhao S L, Hu Y F, Yu X C, et al. Surface wettability effect on fluid transport in nanoscale slit pores[J]. AIChE Journal, 2017, 63(5): 1704-1714. |
48 | Zhu Z W, Lv S Y, Gao Q W, et al. An analytical model for evaluating fluid flux across carbon-based membrane[J]. Journal of Membrane Science, 2022, 644: 120157. |
49 | 陆小华. 材料化学工程中的热力学与分子模拟研究[M]. 北京: 科学出版社, 2011. |
Lu X H. Thermodynamics and Molecular Simulation in Materials Chemical Engineering [M]. Beijing: Science Press, 2011. | |
50 | Ji X Y, Chen D L, Wei T, et al. Determination of dissolution kinetics of K2SO4 crystal with ion selective electrode[J]. Chemical Engineering Science, 2001, 56(24): 7017-7024. |
51 | Xie W L, Ji X Y, Feng X, et al. Mass-transfer rate enhancement for CO2 separation by ionic liquids: theoretical study on the mechanism[J]. AIChE Journal, 2015, 61(12): 4437-4444. |
52 | 陆小华, 蒋管聪, 朱育丹, 等. 受限界面处流体分子行为的调控及相关分子热力学模型初探: 基于高比表面氧化钛的研究进展[J]. 化工学报, 2018, 69(1): 1-8. |
Lu X H, Jiang G C, Zhu Y D, et al. Preliminary study on controlling nanoconfined fluid behavior and modelling molecular thermodynamics: progress in development of high-specific surface area TiO2 [J]. CIESC Journal, 2018, 69(1): 1-8. | |
53 | Xie W L, Ji X Y, Feng X, et al. Mass transfer rate enhancement for CO2 separation by ionic liquids: effect of film thickness[J]. Industrial & Engineering Chemistry Research, 2016, 55(1): 366-372. |
54 | 高庆伟, 覃瑶, 张禹萌, 等. 限域传质分离机制初探:界面吸附层的“二次限域”效应[J]. 化工学报, 2020, 71(10): 4688-4695. |
Gao Q W, Qin Y, Zhang Y M, et al. Preliminary study on mechanism of confined mass transfer and separation: “secondary confinement” effect of interfacial adsorption layer[J]. CIESC Journal, 2020, 71(10): 4688-4695. | |
55 | Sliwinska-Bartkowiak M, Gras J, Sikorski R, et al. Phase transitions in pores: experimental and simulation studies of melting and freezing[J]. Langmuir, 1999, 15(18): 6060-6069. |
56 | Sliwinska-Bartkowiak M, Dudziak G, Sikorski R, et al. Melting/freezing behavior of a fluid confined in porous glasses and MCM-41: dielectric spectroscopy and molecular simulation[J]. The Journal of Chemical Physics, 2000, 114(2): 950-962. |
57 | Striolo A, Chialvo A A, Gubbins K E, et al. Water in carbon nanotubes: adsorption isotherms and thermodynamic properties from molecular simulation[J]. The Journal of Chemical Physics, 2005, 122(23): 234712. |
58 | Striolo A, Chialvo A A, Cummings P T, et al. Simulated water adsorption in chemically heterogeneous carbon nanotubes[J]. The Journal of Chemical Physics, 2006, 124(7): 74710. |
59 | Long Y, Palmer J C, Coasne B, et al. Pressure enhancement in carbon nanopores: a major confinement effect[J]. Physical Chemistry Chemical Physics: PCCP, 2011, 13(38): 17163-17170. |
60 | Gubbins K E, Moore J D. Molecular modeling of matter: impact and prospects in engineering[J]. Industrial & Engineering Chemistry Research, 2010, 49(7): 3026-3046. |
61 | Sliwinska-Bartkowiak M, Sikorski R, Sowers S L, et al. Phase separations for mixtures in well-characterized porous materials: liquid-liquid transitions[J]. Fluid Phase Equilibria, 1997, 136(1/2): 93-109. |
62 | McCallum C L, Bandosz T J, McGrother S C, et al. A molecular model for adsorption of water on activated carbon: comparison of simulation and experiment[J]. Langmuir, 1999, 15(2): 533-544. |
63 | Giovambattista N, Rossky P J, Debenedetti P G. Effect of pressure on the phase behavior and structure of water confined between nanoscale hydrophobic and hydrophilic plates[J]. Physical Review E, 2006, 73(4): 041604. |
64 | Kaneko T, Bai J, Akimoto T, et al. Phase behaviors of deeply supercooled bilayer water unseen in bulk water[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(19): 4839-4844. |
65 | Singh S K, Sinha A, Deo G, et al. Vapor-liquid phase coexistence, critical properties, and surface tension of confined alkanes[J]. The Journal of Physical Chemistry C, 2009, 113(17): 7170-7180. |
66 | Jin B K, Nasrabadi H. Phase behavior of multi-component hydrocarbon systems in nano-pores using gauge-GCMC molecular simulation[J]. Fluid Phase Equilibria, 2016, 425: 324-334. |
67 | Luo S, Nasrabadi H, Lutkenhaus J L. Effect of confinement on the bubble points of hydrocarbons in nanoporous media[J]. AIChE Journal, 2016, 62(5): 1772-1780. |
68 | Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
69 | Algara-Siller G, Lehtinen O, Wang F C, et al. Square ice in graphene nanocapillaries[J]. Nature, 2015, 519(7544): 443-445. |
70 | Radha B, Esfandiar A, Wang F C, et al. Molecular transport through capillaries made with atomic-scale precision[J]. Nature, 2016, 538(7624): 222-225. |
71 | Esfandiar A, Radha B, Wang F C, et al. Size effect in ion transport through angstrom-scale slits[J]. Science, 2017, 358(6362): 511-513. |
72 | Zhou K G, Vasu K S, Cherian C T, et al. Electrically controlled water permeation through graphene oxide membranes[J]. Nature, 2018, 559(7713): 236-240. |
73 | Keerthi A, Geim A K, Janardanan A, et al. Ballistic molecular transport through two-dimensional channels[J]. Nature, 2018, 558(7710): 420-424. |
74 | Fumagalli L, Esfandiar A, Fabregas R, et al. Anomalously low dielectric constant of confined water[J]. Science, 2018, 360(6395): 1339-1342. |
75 | Gopinadhan K, Hu S, Esfandiar A, et al. Complete steric exclusion of ions and proton transport through confined monolayer water[J]. Science, 2019, 363(6423): 145-148. |
76 | Eijkel J C T, van den Berg A. Water in micro- and nanofluidics systems described using the water potential[J]. Lab on a Chip, 2005, 5(11): 1202-1209. |
77 | Sparreboom W, van den Berg A, Eijkel J C T. Principles and applications of nanofluidic transport[J]. Nature Nanotechnology, 2009, 4(11): 713-720. |
78 | Kavokine N, Netz R R, Bocquet L. Fluids at the nanoscale: from continuum to subcontinuum transport[J]. Annual Review of Fluid Mechanics, 2021, 53: 377-410. |
[1] | 崔怡洲, 李成祥, 翟霖晓, 刘束玉, 石孝刚, 高金森, 蓝兴英. 亚毫米气泡和常规尺寸气泡气液两相流流动与传质特性对比[J]. 化工学报, 2023, (): 1-15. |
[2] | 赵若晗, 黄蒙蒙, 朱春英, 付涛涛, 高习群, 马友光. 缩口T型微通道内纳米流体吸收CO2的流动与传质研究[J]. 化工学报, 2023, (): 1-10. |
[3] | 曾如宾, 沈中杰, 梁钦锋, 许建良, 代正华, 刘海峰. 基于分子动力学模拟的Fe2O3纳米颗粒烧结机制研究[J]. 化工学报, 2023, 74(8): 3353-3365. |
[4] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[5] | 周继鹏, 何文军, 李涛. 异形催化剂上乙烯催化氧化失活动力学反应工程计算[J]. 化工学报, 2023, 74(6): 2416-2426. |
[6] | 杨星宇, 马优, 朱春英, 付涛涛, 马友光. 梳状并行微通道内液液分布规律研究[J]. 化工学报, 2023, 74(2): 698-706. |
[7] | 何万媛, 陈一宇, 朱春英, 付涛涛, 高习群, 马友光. 阵列凸起微通道内气液两相传质特性研究[J]. 化工学报, 2023, 74(2): 690-697. |
[8] | 解文潇, 贾胜坤, 张会书, 罗祎青, 袁希钢. 受限空间内浮升气泡与液体间传质行为实验研究[J]. 化工学报, 2022, 73(7): 2902-2911. |
[9] | 万景, 张霖, 樊亚超, 刘勰民, 骆培成, 张锋, 张志炳. 基于介尺度PBM模型的生物反应器放大模拟及实验研究[J]. 化工学报, 2022, 73(6): 2698-2707. |
[10] | 殷亚然, 朱星星, 张先明, 朱春英, 付涛涛, 马友光. 微通道内醇胺/离子液体复配水溶液吸收CO2的传质特性[J]. 化工学报, 2022, 73(5): 1930-1939. |
[11] | 任盼锋, 海润泽, 李奇, 李文彬, 余国琮. 流化床液固两相传质过程的模拟研究进展[J]. 化工学报, 2022, 73(1): 1-17. |
[12] | 陈一宇, 朱春英, 付涛涛, 马友光. 三维菱形结构微通道内气液传质与强化[J]. 化工学报, 2022, 73(1): 175-183. |
[13] | 朱家骅,卢蔚,彭玉凤,李季. 过程工业尾气封闭循环原理与应用(Ⅱ):绿电制硝酸[J]. 化工学报, 2021, 72(10): 5265-5272. |
[14] | 李季,彭玉凤,朱家骅. 过程工业尾气封闭循环原理与应用(Ⅰ):湿法磷酸[J]. 化工学报, 2021, 72(10): 5257-5264. |
[15] | 王芳,贾胜坤,张会书,袁希钢,余国琮. 基于实验数据的湍流扩散POD模态分析[J]. 化工学报, 2021, 72(9): 4531-4543. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||