化工学报 ›› 2022, Vol. 73 ›› Issue (11): 5106-5117.DOI: 10.11949/0438-1157.20221084
王昊成1(), 杨敬瑶1,2, 董学强1(
), 郭浩1, 赵延兴1, 公茂琼1,2(
)
收稿日期:
2022-08-01
修回日期:
2022-09-26
出版日期:
2022-11-05
发布日期:
2022-12-06
通讯作者:
董学强,公茂琼
作者简介:
王昊成(1991—),男,博士,助理研究员,wanghc@mail.ipc.ac.cn
基金资助:
Haocheng WANG1(), Jingyao YANG1,2, Xueqiang DONG1(
), Hao GUO1, Yanxing ZHAO1, Maoqiong GONG1,2(
)
Received:
2022-08-01
Revised:
2022-09-26
Online:
2022-11-05
Published:
2022-12-06
Contact:
Xueqiang DONG, Maoqiong GONG
摘要:
针对10 t/d级氢液化装置研制要求,构建了液氮预冷的连续转化型双压Claude氢液化流程,并开展了氢物性计算方法筛选、连续转化热模型构建以及流程热力设计与参数优化,分析了膨胀机等熵效率、换热器窄点温差以及原料氢沿程阻力等因素对流程参数的影响,给出了不同工况下的流程性能及各关键部件的热力设计参数范围,可为膨胀机、换热器的研制提供设计热力输入参数。该氢液化流程在基础工况下(考虑较恶劣膨胀机运行条件)的最大理论液氢产量12.96 t/d,液氢产品仲氢含量97%;理论总氢液化比功耗为10.50 kWh/kg LH2 (不含原料氢增压),对应的流程㶲效率为35.06%;可为连续转化式大型氢膨胀液化装置的研制提供参考。
中图分类号:
王昊成, 杨敬瑶, 董学强, 郭浩, 赵延兴, 公茂琼. 10 t/d级氢液化装置流程热力分析与优化[J]. 化工学报, 2022, 73(11): 5106-5117.
Haocheng WANG, Jingyao YANG, Xueqiang DONG, Hao GUO, Yanxing ZHAO, Maoqiong GONG. Thermodynamic analysis and optimization of 10 t/d hydrogen liquefaction process[J]. CIESC Journal, 2022, 73(11): 5106-5117.
流程构型 | 技术特点 |
---|---|
L-H循环 (节流循环) | 用于早期或微小型液化装置,能耗较高,目前已少见应用 |
氦膨胀制冷循环 | 主要用于< 2.5 t/d的小型氢液化装置;能耗一般高于氢膨胀制冷 |
氢膨胀制冷循环 | 现有≥5 t/d大型氢液化装置的主流流程(双压Claude循环等) |
新型循环 (J-B循环等) | 液体/两相膨胀机等技术尚未突破,设备初投资高、技术风险大,无实际应用 |
表1 多种氢液化流程构型比较
Table 1 Comparison of several hydrogen liquefaction processes
流程构型 | 技术特点 |
---|---|
L-H循环 (节流循环) | 用于早期或微小型液化装置,能耗较高,目前已少见应用 |
氦膨胀制冷循环 | 主要用于< 2.5 t/d的小型氢液化装置;能耗一般高于氢膨胀制冷 |
氢膨胀制冷循环 | 现有≥5 t/d大型氢液化装置的主流流程(双压Claude循环等) |
新型循环 (J-B循环等) | 液体/两相膨胀机等技术尚未突破,设备初投资高、技术风险大,无实际应用 |
参数 | 两组串联 | 两组并联 |
---|---|---|
进口压力/bar | 24.68 | 24.71 |
进口温度/K | 65.05 | 75.74 |
出口压力/bar | 18.50 | 13.84 |
出口温度/K | 59.15 | 63.02 |
进出口焓降, Δh/(kJ/kg) | 52.34 | 120.04 |
最大线速度, u/(m/s) | 220.01 | 333.19 |
理论转速, ω/(r/min) | 70031 | 106065 |
表2 氢膨胀液化流程典型工况下膨胀机组主要参数对比
Table 2 Main parameter comparison of hydrogen expander units under typical operation conditions
参数 | 两组串联 | 两组并联 |
---|---|---|
进口压力/bar | 24.68 | 24.71 |
进口温度/K | 65.05 | 75.74 |
出口压力/bar | 18.50 | 13.84 |
出口温度/K | 59.15 | 63.02 |
进出口焓降, Δh/(kJ/kg) | 52.34 | 120.04 |
最大线速度, u/(m/s) | 220.01 | 333.19 |
理论转速, ω/(r/min) | 70031 | 106065 |
流程参数 | 计算结果 |
---|---|
最大液化量/(L/h) | 7812.31 |
液氢质量流量/(g/s) | 150.00 |
原料氢压力/bar | 25.00 |
循环氢质量流量/(g/s) | 845.40 |
总UA值/(kW/K) | 617.63 |
液氮耗量/(L/h) | 5810.12 |
氢循环理论功耗/kW | 3347.00 |
氢循环理论比功耗/(kWh/kg LH2) | 6.20 |
预冷理论比功耗/(kWh/kg LH2) | 4.30 |
总理论比功耗/(kWh/kg LH2) | 10.50 |
流程㶲效率/% | 35.06 |
表3 基础工况下10 t/d氢膨胀液化流程主要热力参数
Table 3 Main thermodynamic parameters of 10 t/d hydrogen liquefaction process under basic operation conditions
流程参数 | 计算结果 |
---|---|
最大液化量/(L/h) | 7812.31 |
液氢质量流量/(g/s) | 150.00 |
原料氢压力/bar | 25.00 |
循环氢质量流量/(g/s) | 845.40 |
总UA值/(kW/K) | 617.63 |
液氮耗量/(L/h) | 5810.12 |
氢循环理论功耗/kW | 3347.00 |
氢循环理论比功耗/(kWh/kg LH2) | 6.20 |
预冷理论比功耗/(kWh/kg LH2) | 4.30 |
总理论比功耗/(kWh/kg LH2) | 10.50 |
流程㶲效率/% | 35.06 |
文献 | 流程结构 | 设计产量/(t/d) | 功耗/(kWh/kg) |
---|---|---|---|
[ | 液氮预冷的双压Claude流程(模拟值) | 2.63 | 10.85 |
[ | 液氮预冷的氦气膨胀 制冷流程(模拟值) | 1.51 | 10.25 |
[ | 混合工质预冷的四级 J-B流程(模拟值) | 100 | 5.91 |
[ | 液氮预冷的双压Claude流程(实测值) | 5.00 | 11.90 |
[ | 液氮预冷的氦气膨胀 制冷流程(实测值) | 约1.5 | 约17 |
本文 | 液氮预冷的双压Claude流程(模拟值) | 12.96 | 10.50 |
表4 氢膨胀液化流程典型工况下膨胀机组主要参数对比
Table 4 Main parameter comparison of hydrogen expander units under typical operation conditions
文献 | 流程结构 | 设计产量/(t/d) | 功耗/(kWh/kg) |
---|---|---|---|
[ | 液氮预冷的双压Claude流程(模拟值) | 2.63 | 10.85 |
[ | 液氮预冷的氦气膨胀 制冷流程(模拟值) | 1.51 | 10.25 |
[ | 混合工质预冷的四级 J-B流程(模拟值) | 100 | 5.91 |
[ | 液氮预冷的双压Claude流程(实测值) | 5.00 | 11.90 |
[ | 液氮预冷的氦气膨胀 制冷流程(实测值) | 约1.5 | 约17 |
本文 | 液氮预冷的双压Claude流程(模拟值) | 12.96 | 10.50 |
1 | Aasadnia M, Mehrpooya M. Large-scale liquid hydrogen production methods and approaches: a review[J]. Applied Energy, 2018, 212: 57-83. |
2 | Ohlig K, Decker L. The latest developments and outlook for hydrogen liquefaction technology[J]. AIP Conference Proceedings, 2014, 1573(1): 1311-1317. |
3 | Krasae-in S, Stang J H, Neksa P. Development of large-scale hydrogen liquefaction processes from 1898 to 2009[J]. International Journal of Hydrogen Energy, 2010, 35(10): 4524-4533. |
4 | 唐璐, 邱利民, 姚蕾, 等. 氢液化系统的研究进展与展望[J]. 制冷学报, 2011, 32(6): 1-8. |
Tang L, Qiu L M, Yao L, et al. Review on research and developments of hydrogen liquefaction systems[J]. Journal of Refrigeration, 2011, 32(6): 1-8. | |
5 | 陈双涛, 周楷淼, 赖天伟, 等. 大规模氢液化方法与装置[J]. 真空与低温, 2020, 26(3): 173-178. |
Chen S T, Zhou K M, Lai T W, et al. Large-scale hydrogen liquefaction methods and devices[J]. Vacuum and Cryogenics, 2020, 26(3): 173-178. | |
6 | Moradi R, Groth K M. Hydrogen storage and delivery: review of the state of the art technologies and risk and reliability analysis[J]. International Journal of Hydrogen Energy, 2019, 44(23): 12254-12269. |
7 | Ni M. An overview of hydrogen storage technologies [J]. Energy Exploration & Exploitation, 2006, 24(3): 197-209. |
8 | 张祉祐. 低温技术原理与装置[M]. 北京:机械工业出版社, 1987. |
Zhang Z Y. Principle and Equipment of Cryogenic Technology[M]. Beijing: China Machine Press, 1987. | |
9 | Garceau N M, Baik J H, Lim C M, et al. Development of a small-scale hydrogen liquefaction system[J]. International Journal of Hydrogen Energy, 2015, 40(35): 11872-11878. |
10 | 曹学文, 杨健, 边江, 等. 新型双压Linde-Hampson氢液化工艺设计与分析[J]. 化工进展, 2021, 40(12): 6663-6669. |
Cao X W, Yang J, Bian J, et al. Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6663-6669. | |
11 | 吕翠, 王金阵, 朱伟平, 等. 氢液化技术研究进展及能耗分析[J]. 低温与超导, 2019, 47(7): 11-18. |
Lyu C, Wang J Z, Zhu W P, et al. Research progress and energy consumption analysis of hydrogen liquefaction technology[J]. Cryogenics & Superconductivity, 2019, 47(7): 11-18. | |
12 | 殷靓, 巨永林. 氢液化流程设计和优化方法研究进展[J]. 制冷学报, 2020, 41(3): 1-10. |
Yin L, Ju Y L. Review on researches and developments of the design and optimization for hydrogen liquefaction processes[J]. Journal of Refrigeration, 2020, 41(3): 1-10. | |
13 | Staats W L. Analysis of a supercritical hydrogen liquefaction cycle[D]. Cambridge: Massachusetts Institute of Technology, 2008. |
14 | Yuksel Y E, Ozturk M, Dincer I. Analysis and assessment of a novel hydrogen liquefaction process[J]. International Journal of Hydrogen Energy, 2017, 42(16): 11429-11438. |
15 | 殷靓, 巨永林, 王刚. 1, 000 L/h氢液化装置工艺流程分析及优化[J]. 制冷技术, 2019, 39(1): 39-44. |
Yin L, Ju Y L, Wang G. Process analysis and optimization of 1, 000 L/h hydrogen liquefaction system[J]. Chinese Journal of Refrigeration Technology, 2019, 39(1): 39-44. | |
16 | 唐璐. 基于液氮预冷的氢液化流程设计及系统模拟[D]. 杭州: 浙江大学, 2012. |
Tang L. Design and simulation of a hydrogen liquefaction cycle based on liquid nitrogen precooling[D]. Hangzhou: Zhejiang University, 2012. | |
17 | Baker C R, Shaner R L. A study of the efficiency of hydrogen liquefaction[J]. International Journal of Hydrogen Energy, 1978, 3(3): 321-334. |
18 | Stang J, Nekså P, Brendeng E. On the design of an efficient hydrogen liquefaction process[C]//Proceeding of the 16th World Hydrogen Energy Conference. 2006. |
19 | Krasae-in S, Stang J H, Neksa P. Simulation on a proposed large-scale liquid hydrogen plant using a multi-component refrigerant refrigeration system[J]. International Journal of Hydrogen Energy, 2010, 35(22): 12531-12544. |
20 | Ansarinasab H, Mehrpooya M, Mohammadi A. Advanced exergy and exergoeconomic analyses of a hydrogen liquefaction plant equipped with mixed refrigerant system[J]. Journal of Cleaner Production, 2017, 144: 248-259. |
21 | Kuendig A, Loehlein K, Kramer G J, et al. Large scale hydrogen liquefaction in combination with LNG re-gasification[C]//Proceedings of the 16th World Hydrogen Energy Conference. 2006: 3326-3333. |
22 | Cardella U, Decker L, Sundberg J, et al. Process optimization for large-scale hydrogen liquefaction[J]. International Journal of Hydrogen Energy, 2017, 42(17): 12339-12354. |
23 | Asadnia M, Mehrpooya M. A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems[J]. International Journal of Hydrogen Energy, 2017, 42(23): 15564-15585. |
24 | Gross R, Otto W, Patzelt A, et al. Liquid hydrogen for Europe—the Linde plant at Ingolstadt [J]. Linde-Reports on Science and Technology, 1994, 54: 37-43. |
25 | Bracha M, Lorenz G, Patzelt A, et al. Large-scale hydrogen liquefaction in Germany[J]. International Journal of Hydrogen Energy, 1994, 19(1): 53-59. |
26 | Leachman J W, Jacobsen R T, Penoncello S G, et al. Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen[J]. Journal of Physical and Chemical Reference Data, 2009, 38(3): 721-748. |
27 | Zhuzhgov A V, Krivoruchko O P, Isupova L A, et al. Low-temperature conversion of ortho-hydrogen into liquid para-hydrogen: process and catalysts. Review[J]. Catalysis in Industry, 2018, 10(1):9-19. |
28 | 杨晓阳, 杨昌乐. 正仲氢转化催化剂性能研究[J]. 化学推进剂与高分子材料, 2018, 16(3): 79-82. |
Yang X Y, Yang C L. Study on performance of orthohydrogen-parahydrogen converting catalyst[J]. Chemical Propellants & Polymeric Materials, 2018, 16(3): 79-82. | |
29 | Jacobsen R T, Stewart R B. Thermodynamic properties of nitrogen including liquid and vapor phases from[J]. Journal of Physical and Chemical Reference Data, 1973, 2(4): 757-922. |
30 | Lemmon E W, Huber M L, McLinden M O. NIST standard reference database 23: reference fluid thermodynamic and transport properties (REFPROP), version 9.0[DB]. Gaithersburg: National Institute of Standards and Technology, 2010. |
31 | Peng D Y, Robinson D B. A new two-constant equation of state[J]. Industrial & Engineering Chemistry Fundamentals, 1976, 15(1): 59-64. |
32 | Kwak T Y, Mansoori G A. van der Waals mixing rules for cubic equations of state. Applications for supercritical fluid extraction modelling[J]. Chemical Engineering Science, 1986, 41(5): 1303-1309. |
33 | Box M J. A new method of constrained optimization and a comparison with other methods[J]. The Computer Journal, 1965, 8(1): 42-52. |
34 | Linnhoff B, Hindmarsh E. The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763. |
35 | 徐攀, 文键, 厉彦忠, 等. 氢正仲转化耦合流动换热板翅式换热器研究[J]. 西安交通大学学报, 2021, 55(12): 16-24. |
Xu P, Wen J, Li Y Z, et al. Study on hydrogen ortho-para conversion coupled with flow and heat transfer of the plate fin heat exchanger[J]. Journal of Xi’an Jiaotong University, 2021, 55(12): 16-24. | |
36 | 李启铭, 张磊, 徐攀, 等. 氢液化流程中催化换热一体化可行性研究[J]. 化学工程, 2021, 49(7): 26-30. |
Li Q M, Zhang L, Xu P, et al. Feasibility on integration of catalysis and heat transfer in hydrogen liquefaction process[J]. Chemical Engineering (China), 2021, 49(7): 26-30. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 黄琮琪, 吴一梅, 陈建业, 邵双全. 碱性电解水制氢装置热管理系统仿真研究[J]. 化工学报, 2023, 74(S1): 320-328. |
[3] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[4] | 米泽豪, 花儿. 基于DFT和COSMO-RS理论研究多元胺型离子液体吸收SO2气体[J]. 化工学报, 2023, 74(9): 3681-3696. |
[5] | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
[6] | 曹跃, 余冲, 李智, 杨明磊. 工业数据驱动的加氢裂化装置多工况切换过渡状态检测[J]. 化工学报, 2023, 74(9): 3841-3854. |
[7] | 杨绍旗, 赵淑蘅, 陈伦刚, 王晨光, 胡建军, 周清, 马隆龙. Raney镍-质子型离子液体体系催化木质素平台分子加氢脱氧制备烷烃[J]. 化工学报, 2023, 74(9): 3697-3707. |
[8] | 陆俊凤, 孙怀宇, 王艳磊, 何宏艳. 离子液体界面极化及其调控氢键性质的分子机理[J]. 化工学报, 2023, 74(9): 3665-3680. |
[9] | 杨菲菲, 赵世熙, 周维, 倪中海. Sn掺杂的In2O3催化CO2选择性加氢制甲醇[J]. 化工学报, 2023, 74(8): 3366-3374. |
[10] | 刘晓洋, 喻健良, 侯玉洁, 闫兴清, 张振华, 吕先舒. 螺旋微通道对掺氢甲烷爆轰传播的影响[J]. 化工学报, 2023, 74(7): 3139-3148. |
[11] | 董明, 徐进良, 刘广林. 超临界水非均质特性分子动力学研究[J]. 化工学报, 2023, 74(7): 2836-2847. |
[12] | 牛超, 沈胜强, 杨艳, 潘泊年, 李熠桥. 甲烷BOG喷射器流动过程计算与性能分析[J]. 化工学报, 2023, 74(7): 2858-2868. |
[13] | 张希庆, 王琰婷, 徐彦红, 常淑玲, 孙婷婷, 薛定, 张立红. Mg量影响的纳米片负载Pt-In催化异丁烷脱氢性能[J]. 化工学报, 2023, 74(6): 2427-2435. |
[14] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[15] | 周小文, 杜杰, 张战国, 许光文. 基于甲烷脉冲法的Fe2O3-Al2O3载氧体还原特性研究[J]. 化工学报, 2023, 74(6): 2611-2623. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||