化工学报 ›› 2022, Vol. 73 ›› Issue (11): 5106-5117.DOI: 10.11949/0438-1157.20221084

• 能源和环境工程 • 上一篇    下一篇

10 t/d级氢液化装置流程热力分析与优化

王昊成1(), 杨敬瑶1,2, 董学强1(), 郭浩1, 赵延兴1, 公茂琼1,2()   

  1. 1.中国科学院理化技术研究所低温工程学重点实验室,北京 100190
    2.中国科学院大学,北京 100190
  • 收稿日期:2022-08-01 修回日期:2022-09-26 出版日期:2022-11-05 发布日期:2022-12-06
  • 通讯作者: 董学强,公茂琼
  • 作者简介:王昊成(1991—),男,博士,助理研究员,wanghc@mail.ipc.ac.cn
  • 基金资助:
    国家重点研发计划项目(2021YFB4000700);国家自然科学基金重点项目(52036010)

Thermodynamic analysis and optimization of 10 t/d hydrogen liquefaction process

Haocheng WANG1(), Jingyao YANG1,2, Xueqiang DONG1(), Hao GUO1, Yanxing ZHAO1, Maoqiong GONG1,2()   

  1. 1.Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, CAS, Beijing 100190, China
    2.University of Chinese Academy of Sciences, Beijing 100190, China
  • Received:2022-08-01 Revised:2022-09-26 Online:2022-11-05 Published:2022-12-06
  • Contact: Xueqiang DONG, Maoqiong GONG

摘要:

针对10 t/d级氢液化装置研制要求,构建了液氮预冷的连续转化型双压Claude氢液化流程,并开展了氢物性计算方法筛选、连续转化热模型构建以及流程热力设计与参数优化,分析了膨胀机等熵效率、换热器窄点温差以及原料氢沿程阻力等因素对流程参数的影响,给出了不同工况下的流程性能及各关键部件的热力设计参数范围,可为膨胀机、换热器的研制提供设计热力输入参数。该氢液化流程在基础工况下(考虑较恶劣膨胀机运行条件)的最大理论液氢产量12.96 t/d,液氢产品仲氢含量97%;理论总氢液化比功耗为10.50 kWh/kg LH2 (不含原料氢增压),对应的流程㶲效率为35.06%;可为连续转化式大型氢膨胀液化装置的研制提供参考。

关键词: 氢, 液化, 膨胀机, 热力学过程, 流程分析

Abstract:

According to the requirements for the development of a 10 t/d hydrogen liquefaction unit, a continuous conversion dual-pressure Claude hydrogen liquefaction process with liquid nitrogen precooling was constructed. The hydrogen liquefaction process is based on a liquid-nitrogen-precooled dual pressure Claude cycle using continuous ortho-to-para hydrogen conversion method. The influence of key factors on process performance is analyzed, including expander isentropic efficiency, recuperator minimum approach and feed hydrogen pressure drop, etc. The thermodynamic parameter ranges of the liquefaction process and key equipment are provided, which could be a reference for the design of expanders and recuperators. Under the basic operation conditions (a severe operation condition for hydrogen expanders), the maximum liquid hydrogen output is 12.96 t/d with para-hydrogen concentration of 97%. The calculated overall specific power consumption is 10.50 kWh/kg LH2 (the compression power of feed hydrogen is not included), with process exergy efficiency of 35.06%. The simulation methods and simulation results could be a reference for the development of continuous ortho-to-para conversion type large scale hydrogen liquefaction systems.

Key words: hydrogen, liquefaction, expander, thermodynamics process, process analysis

中图分类号: