化工学报 ›› 2023, Vol. 74 ›› Issue (4): 1528-1538.DOI: 10.11949/0438-1157.20221568
任金胜1(), 刘克润1, 焦志伟1, 刘家祥2, 于源1()
收稿日期:
2022-12-05
修回日期:
2023-02-09
出版日期:
2023-04-05
发布日期:
2023-06-02
通讯作者:
于源
作者简介:
任金胜(1998—),男,硕士研究生,renjs630@163.com
基金资助:
Jinsheng REN1(), Kerun LIU1, Zhiwei JIAO1, Jiaxiang LIU2, Yuan YU1()
Received:
2022-12-05
Revised:
2023-02-09
Online:
2023-04-05
Published:
2023-06-02
Contact:
Yuan YU
摘要:
超细颗粒往往会因为黏附力形成团聚,从而限制了通过气力分级制备粒径小且分布范围窄的超细粉体。研究团聚体解团机理可为提出解团措施提供理论依据。利用EDEM二次开发功能通过颗粒工厂生成团聚体,基于FLUENT-EDEM耦合进行涡流空气分级机环形区近导叶处区域团聚体运动及其解团过程的数值模拟,研究了不同入口风速下对团聚体解团的影响程度,并揭示了团聚体在环形区近导叶处区域的解团机理。结果表明,在导叶近壁面区域气力流场的剪切力无法使团聚体解团,流场中解团是由于团聚体与固壁面碰撞而引起的。在转笼转速为1200 r·min-1,入口风速为6、12、18、24 m·s-1的情况下,单颗粒占比数随入口风速由71.7%增大到88.39%,而未解团的团聚体由24.8%减少到10.51%,部分解团后形成的团聚体的占比均不超过4%,表明单个团聚体在流场中解团程度较大,入口风速增大会提高环形区近导叶处粉体分级时的分散性,引入无量纲参数——相对碰撞次数验证了这一结果。
中图分类号:
任金胜, 刘克润, 焦志伟, 刘家祥, 于源. 涡流空气分级机近导叶处团聚体解团机理研究[J]. 化工学报, 2023, 74(4): 1528-1538.
Jinsheng REN, Kerun LIU, Zhiwei JIAO, Jiaxiang LIU, Yuan YU. Research on the mechanism of disaggregation of particle aggregates near the guide vanes of turbo air classifier[J]. CIESC Journal, 2023, 74(4): 1528-1538.
参数 | 数值 |
---|---|
小颗粒粒径dp/μm | 10 |
团聚体粒径Dagg/μm | 30 |
颗粒密度 | 2150[ |
杨氏模量E | 7.3 |
泊松比μ | 0.17 |
颗粒间碰撞恢复系数ep | 0.75[ |
颗粒间静摩擦因数μrp | 0.75[ |
颗粒间滚动摩擦因数μsp | 0.02[ |
颗粒壁面碰撞恢复系数ew | 0.7[ |
颗粒壁面静摩擦因数μrw | 0.3[ |
颗粒壁面滚动恢复系数μsw | 0.005[ |
表面能参数γ/(J·m-2) | 0.0826[ |
表1 离散元仿真参数设置
Table 1 Parameter setting of discrete element simulation
参数 | 数值 |
---|---|
小颗粒粒径dp/μm | 10 |
团聚体粒径Dagg/μm | 30 |
颗粒密度 | 2150[ |
杨氏模量E | 7.3 |
泊松比μ | 0.17 |
颗粒间碰撞恢复系数ep | 0.75[ |
颗粒间静摩擦因数μrp | 0.75[ |
颗粒间滚动摩擦因数μsp | 0.02[ |
颗粒壁面碰撞恢复系数ew | 0.7[ |
颗粒壁面静摩擦因数μrw | 0.3[ |
颗粒壁面滚动恢复系数μsw | 0.005[ |
表面能参数γ/(J·m-2) | 0.0826[ |
条件 | 参数 |
---|---|
Dagg | a1=0.26, a2=1, a3=0.5, a4=0 |
3lD | a1=0.068, a2=1, a3=1, a4=4 |
7lD | a1=0.49, a2=3, a3=0.25, a4=1 |
Dagg | a1=1.9, a2=1, a3=2/3, a4=0 |
表2 计算团聚体在流场中临界剪切应力的参数选择[44]
Table 2 Parameter selection for critical shear stress of aggregates in flow field[44]
条件 | 参数 |
---|---|
Dagg | a1=0.26, a2=1, a3=0.5, a4=0 |
3lD | a1=0.068, a2=1, a3=1, a4=4 |
7lD | a1=0.49, a2=3, a3=0.25, a4=1 |
Dagg | a1=1.9, a2=1, a3=2/3, a4=0 |
入口风速/(m·s-1) | |
---|---|
6 | 4.37 |
12 | 9.96 |
18 | 14.61 |
24 | 19.63 |
表3 所有颗粒在X方向上的速度平均值v¯X
Table 3 Average velocity of all particles in X direction v¯X
入口风速/(m·s-1) | |
---|---|
6 | 4.37 |
12 | 9.96 |
18 | 14.61 |
24 | 19.63 |
1 | Gan L L, Xiao Z H, Pan H X, et al. Efficiently production of micron-sized polyethylene terephthalate (PET) powder from waste polyester fibre by physicochemical method[J]. Advanced Powder Technology, 2021, 32(2): 630-636. |
2 | Sadhasivam S, Shanmugam M, Umamaheswaran P D, et al. Zinc oxide nanoparticles: green synthesis and biomedical applications[J]. Journal of Cluster Science, 2021, 32(6): 1441-1455. |
3 | Wang Q K, Wang Y Q, Chang Q B, et al. Preparation of ultrafine spherical Pr-ZrSiO4 pigment by sol-gel-microemulsion method[J]. Silicon, 2020, 12(3): 585-594. |
4 | Xu Z G, Ma X Q, Gao Y E, et al. Multifunctional silica nanoparticles as a promising theranostic platform for biomedical applications[J]. Materials Chemistry Frontiers, 2017, 1(7): 1257-1272. |
5 | Friebel C, Steckel H, Müller B W. Rational design of a dry powder inhaler: device design and optimisation[J]. Journal of Pharmacy and Pharmacology, 2012, 64(9): 1303-1315. |
6 | Kuang C F, Liu Y, Hao X. Creating attoliter detection volume by microsphere photonic nanojet and fluorescence depletion[J]. Optics Communications, 2012, 285(4): 402-406. |
7 | Ku Y L, Kuang C F, Hao X, et al. Superenhanced three-dimensional confinement of light by compound metal-dielectric microspheres[J]. Optics Express, 2012, 20(15): 16981-16991. |
8 | Sun Z K, Yang L J, Wu H, et al. Agglomeration and removal characteristics of fine particles from coal combustion under different turbulent flow fields[J]. Journal of Environmental Sciences, 2020, 89: 113-124. |
9 | Fabrizio S. Particle agglomeration during fluidized bed combustion: mechanisms, early detection and possible countermeasures[J]. Fuel Processing Technology, 2018, 171: 31-38. |
10 | Ogholaja T, Njobuenwu D O, Fairweather M. LES of particle collision and agglomeration in vertical channel flows[M]//Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2018: 555-560. |
11 | 孔令菲, 陈延佩, 王维. 气固流态化中颗粒介尺度结构的动力学研究[J]. 化工学报, 2022, 73(6): 2486-2495. |
Kong L F, Chen Y P, Wang W. Dynamic study of mesoscale structures of particles in gas-solid fluidization[J]. CIESC Journal, 2022, 73(6): 2486-2495. | |
12 | 孙宗康, 张笑丹, 杨林军, 等. 化学与湍流团聚耦合促进燃煤细颗粒物团聚与脱除[J]. 化工学报, 2020, 71(3): 1317-1325. |
Sun Z K, Zhang X D, Yang L J, et al. Promoting the agglomeration and removal of coal-fired fine particles by coupling of chemical and turbulent agglomeration[J]. CIESC Journal, 2020, 71(3): 1317-1325. | |
13 | Rumpf H. Grundlagen und methoden des granulierens (3): Überblick über Die technischen granulierverfahren[J]. Chemie Ingenieur Technik, 1958, 30(5): 329-336. |
14 | Schubert E. Handbuch der Mechanischen Verfahrenstechnik[M]. Weinheim: Wiley-VCH, 2002. |
15 | Weiler C, Wolkenhauer M, Trunk M, et al. New model describing the total dispersion of dry powder agglomerates[J]. Powder Technology, 2010, 203(2): 248-253. |
16 | Liu R L, You C F, Yang R C, et al. Direct numerical simulation of kinematics and thermophoretic deposition of inhalable particles in turbulent duct flows[J]. Aerosol Science and Technology, 2010, 44(12): 1146-1156. |
17 | Liu M, Shen Z J, Zhou S Y, et al. Gas-solid reaction induced particle collision and aggregation[J]. Combustion and Flame, 2022, 237: 111885. |
18 | Tedeschi S T, Stevens N I, Powers K, et al. Improving aerosol dispersion through processing and dissemination techniques[J]. KONA Powder and Particle Journal, 2009, 27: 217-227. |
19 | 田媛, 杨俊杰, 赖雪, 等. 二氧化硅微球颗粒解团聚研究[J]. 红外与激光工程, 2015, 44(11): 3336-3342. |
Tian Y, Yang J J, Lai X, et al. Study on de-agglomeration of the silica microsphere[J]. Infrared and Laser Engineering, 2015, 44(11): 3336-3342. | |
20 | Krzosa R, Makowski Ł, Orciuch W, et al. Population balance application in TiO2 particle deagglomeration process modeling[J]. Energies, 2021, 14(12): 3523. |
21 | 梅芳, 张庆红, 陆厚根. 气流分级“鱼钩效应”的研究[J]. 硅酸盐学报, 1996, 24(6): 616-621. |
Mei F, Zhang Q H, Lu H G. Study on the “fish hook effect” in air classifiers[J]. Journal of the Chinese Ceramic Society, 1996, 24(6): 616-621. | |
22 | Guizani R, Mhiri H, Bournot P. Effects of the geometry of fine powder outlet on pressure drop and separation performances for dynamic separators[J]. Powder Technology, 2017, 314: 599-607. |
23 | Sun Z P, Liu C Y, Yang G, et al. Orthogonal vortices characteristic, performance evaluation and classification mechanism of a horizontal classifier with three rotor cages[J]. Powder Technology, 2022, 404: 117438. |
24 | Yu Y, Kong X, Ren C, et al. Effect of the rotor cage chassis on inner flow field of a turbo air classifier[J]. Materialwissenschaft Und Werkstofftechnik, 2021, 52(7): 772-780. |
25 | Li H, He Y Q, Yang J S, et al. Impact of particle density on the classification efficiency of the static air classifier in vertical spindle mill[J]. Physicochemical Problems of Mineral Processing, 2018, 55: 494-503. |
26 | Toprak N A, Altun O, Benzer A H. The effects of grinding aids on modelling of air classification of cement[J]. Construction and Building Materials, 2018, 160: 564-573. |
27 | Zhou Y H, Shen W. Numerical simulation of particle classification in new multi-product classifier[J]. Chemical Engineering Research and Design, 2022, 177: 484-492. |
28 | 任立波. 稠密颗粒两相流的CFD-DEM耦合并行算法及数值模拟[D]. 济南: 山东大学, 2015. |
Ren L B. A parallel CFD-DEM coupling model and numerical simulation of dense particulate two-phase flows[D]. Jinan: Shandong University, 2015. | |
29 | Zhou L Y, Ma H Q, Liu Z H, et al. Development and verification of coarse-grain CFD-DEM for nonspherical particles in a gas-solid fluidized bed[J]. AIChE Journal, 2022, 68(11): e17876. |
30 | Lin J J, Luo K, Wang S, et al. An augmented coarse-grained CFD-DEM approach for simulation of fluidized beds[J]. Advanced Powder Technology, 2020, 31(10): 4420-4427. |
31 | 任成. 涡流空气分级机流场分布规律及结构对比研究[D]. 北京: 北京化工大学, 2019. |
Ren C. Study on flow field distribution and structure comparison of turbo air classifier[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
32 | 武树波. 涡流空气分级机颗粒分离过程数学模拟及双层撒料盘设计[D]. 北京: 北京化工大学, 2017. |
Wu S B. Mathematical simulation of particles separation process and design of double layer spreading plate of turbo air classifier[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
33 | Liu H X, Yang F X, Tan H Z, et al. Experimental and numerical investigation on the structure characteristics of vortex generators affecting particle agglomeration[J]. Powder Technology, 2020, 362: 805-816. |
34 | Victoria-Camacho J A, DeLaCruz-Araujo R A, Kretzschmar I, et al. Self-assembly of magnetic colloids with radially shifted dipoles[J]. Soft Matter, 2020, 16(10): 2460-2472. |
35 | Liu W, Jiang W, Zhang H, et al. DEM simulations of spherical particle-particle collisions[J]. The Canadian Journal of Chemical Engineering, 2021, 101(2): 984-995. |
36 | Ma G G, Sun Z J, Ma H, et al. Calibration of contact parameters for moist bulk of shotcrete based on EDEM[J]. Advances in Materials Science and Engineering, 2022, 2022: 1-14. |
37 | Capece M, Davé R N, Bilgili E. A pseudo-coupled DEM-non-linear PBM approach for simulating the evolution of particle size during dry milling[J]. Powder Technology, 2018, 323: 374-384. |
38 | Dollimore D, Pearce J. Changes in surface free energy for the adsorption of nitrogen on porous powders of alumina and silica coated with manganese oxides[J]. Surface Technology, 1980, 10(2): 123-131. |
39 | Chu K W, Yu A B. Numerical simulation of complex particle-fluid flows[J]. Powder Technology, 2008, 179(3): 104-114. |
40 | Bharadwaj R, Ketterhagen W R, Hancock B C. Discrete element simulation study of a Freeman powder rheometer[J]. Chemical Engineering Science, 2010, 65(21): 5747-5756. |
41 | 黄争灿. 超细颗粒物PM 0.1的涡聚并机理与效率研究[D]. 北京: 华北电力大学(北京), 2019. |
Huang Z C. Study on vortex coalescence mechanism and efficiency of ultrafine particulate PM 0.1[D]. Beijing: North China Electric Power University, 2019. | |
42 | Cui Y, Sommerfeld M. The modelling of carrier-wall collision with drug particle detachment for dry powder inhaler applications[J]. Powder Technology, 2019, 344: 741-755. |
43 | Chang G, Egan G, McNeil J D, et al. Seasonal particle responses to near-bed shear stress in a shallow, wave- and current-driven environment[J]. Limnology and Oceanography Letters, 2022, 7(2): 175-183. |
44 | Weiler C. Generierung Leicht Dispergierbarer Inhalationspulver Mittels Sprühtrocknung[M]. Germany: Johannes Gutenberg-Universität Mainz, 2008: 26-32. |
[1] | 周绍华, 詹飞龙, 丁国良, 张浩, 邵艳坡, 刘艳涛, 郜哲明. 短管节流阀内流动噪声的实验研究及降噪措施[J]. 化工学报, 2023, 74(S1): 113-121. |
[2] | 叶展羽, 山訸, 徐震原. 用于太阳能蒸发的折纸式蒸发器性能仿真[J]. 化工学报, 2023, 74(S1): 132-140. |
[3] | 张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190. |
[4] | 王志国, 薛孟, 董芋双, 张田震, 秦晓凯, 韩强. 基于裂隙粗糙性表征方法的地热岩体热流耦合数值模拟与分析[J]. 化工学报, 2023, 74(S1): 223-234. |
[5] | 江河, 袁俊飞, 王林, 邢谷雨. 均流腔结构对微细通道内相变流动特性影响的实验研究[J]. 化工学报, 2023, 74(S1): 235-244. |
[6] | 宋嘉豪, 王文. 斯特林发动机与高温热管耦合运行特性研究[J]. 化工学报, 2023, 74(S1): 287-294. |
[7] | 张思雨, 殷勇高, 贾鹏琦, 叶威. 双U型地埋管群跨季节蓄热特性研究[J]. 化工学报, 2023, 74(S1): 295-301. |
[8] | 肖明堃, 杨光, 黄永华, 吴静怡. 浸没孔液氧气泡动力学数值研究[J]. 化工学报, 2023, 74(S1): 87-95. |
[9] | 温凯杰, 郭力, 夏诏杰, 陈建华. 一种耦合CFD与深度学习的气固快速模拟方法[J]. 化工学报, 2023, 74(9): 3775-3785. |
[10] | 王玉兵, 李杰, 詹宏波, 朱光亚, 张大林. R134a在菱形离散肋微小通道内的流动沸腾换热实验研究[J]. 化工学报, 2023, 74(9): 3797-3806. |
[11] | 袁佳琦, 刘政, 黄锐, 张乐福, 贺登辉. 泡状入流条件下旋流泵能量转换特性研究[J]. 化工学报, 2023, 74(9): 3807-3820. |
[12] | 何松, 刘乔迈, 谢广烁, 王斯民, 肖娟. 高浓度水煤浆管道气膜减阻两相流模拟及代理辅助优化[J]. 化工学报, 2023, 74(9): 3766-3774. |
[13] | 陈美思, 陈威达, 李鑫垚, 李尚予, 吴有庭, 张锋, 张志炳. 硅基离子液体微颗粒强化气体捕集与转化的研究进展[J]. 化工学报, 2023, 74(9): 3628-3639. |
[14] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[15] | 刘文竹, 云和明, 王宝雪, 胡明哲, 仲崇龙. 基于场协同和耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||