化工学报 ›› 2023, Vol. 74 ›› Issue (S1): 183-190.DOI: 10.11949/0438-1157.20230171
收稿日期:
2023-02-27
修回日期:
2023-03-27
出版日期:
2023-06-05
发布日期:
2023-09-27
通讯作者:
杜文静
作者简介:
张义飞(1998—),男,硕士研究生,202134531@mail.sdu.edu.cn
Yifei ZHANG(), Fangchen LIU, Shuangxing ZHANG, Wenjing DU(
)
Received:
2023-02-27
Revised:
2023-03-27
Online:
2023-06-05
Published:
2023-09-27
Contact:
Wenjing DU
摘要:
印刷电路板式换热器(PCHE)作为一种高效紧凑的新型微通道换热器,在超临界二氧化碳(SCO2)布雷顿循环中具有广阔应用前景。通过数值模拟分析了SCO2在变径PCHE中的热工水力性能,结果表明:随着宽径的减小,表面传热系数增大,其相对于等径PCHE的提升效果更加显著;较大宽径PCHE的变径形式有着较小的CO2压降增长率,宽径较小时变径结构会使综合性能有更显著的提高;表面传热系数随着渐变比的增加而增加,将变径段置于PCHE后端具有更优的传热特性,其表面传热系数峰值较其他形式提高了23%。不同结构的变径PCHE性能分析可为SCO2冷却理论研究和PCHE典型工程应用提供参考和借鉴。
中图分类号:
张义飞, 刘舫辰, 张双星, 杜文静. 超临界二氧化碳用印刷电路板式换热器性能分析[J]. 化工学报, 2023, 74(S1): 183-190.
Yifei ZHANG, Fangchen LIU, Shuangxing ZHANG, Wenjing DU. Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide[J]. CIESC Journal, 2023, 74(S1): 183-190.
项目 | 冷侧温差/K | 热侧温差/K | 冷侧压降/Pa | 热侧压降/Pa |
---|---|---|---|---|
实验数据 | 140.38 | 169.6 | 73220 | 24180 |
模拟结果 | 136.48 | 174.17 | 76711 | 23107.5 |
误差 | 2.78% | 2.69% | 4.77% | 4.44% |
表1 模拟结果与实验值的误差对比
Table 1 Error comparison between numerical results and experimental data
项目 | 冷侧温差/K | 热侧温差/K | 冷侧压降/Pa | 热侧压降/Pa |
---|---|---|---|---|
实验数据 | 140.38 | 169.6 | 73220 | 24180 |
模拟结果 | 136.48 | 174.17 | 76711 | 23107.5 |
误差 | 2.78% | 2.69% | 4.77% | 4.44% |
1 | Saeed M, Kim M H. Thermal and hydraulic performance of SCO2 PCHE with different fin configurations[J]. Applied Thermal Engineering, 2017, 127: 975-985. |
2 | Ren Z, Zhang L, Zhao C R, et al. Local flow and heat transfer of supercritical CO2 in semicircular zigzag channels of printed circuit heat exchanger during cooling[J]. Heat Transfer Engineering, 2021, 42(22): 1889-1913. |
3 | Al-Sulaiman F A, Atif M. Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower[J]. Energy, 2015, 82: 61-71. |
4 | 薛琪, 冯民, 吴攀, 等. 空冷和水冷超临界二氧化碳布雷顿循环冷却核能系统的构型优化研究[J]. 核科学与工程, 2022, 42(4): 822-830. |
Xue Q, Feng M, Wu P, et al. Study on configuration optimization of supercritical CO2 Brayton cycle cooling nuclear energy system[J]. Nuclear Science and Engineering, 2022, 42(4): 822-830. | |
5 | Garg P, Kumar P, Srinivasan K. Supercritical carbon dioxide Brayton cycle for concentrated solar power[J]. The Journal of Supercritical Fluids, 2013, 76: 54-60. |
6 | Moisseytsev A, Sienicki J J. Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor[J]. Nuclear Engineering and Design, 2009, 239(7): 1362-1371. |
7 | Ahn Y, Bae S J, Kim M, et al. Review of supercritical CO2 power cycle technology and current status of research and development[J]. Nuclear Engineering and Technology, 2015, 47(6): 647-661. |
8 | Chu W X, Li X H, Chen Y, et al. Experimental study on small scale printed circuit heat exchanger with zigzag channels[J]. Heat Transfer Engineering, 2021, 42(9): 723-735. |
9 | Ahn Y, Lee J, Kim S G, et al. Design consideration of supercritical CO2 power cycle integral experiment loop[J]. Energy, 2015, 86: 115-127. |
10 | Kim I H, No H C. Thermal hydraulic performance analysis of a printed circuit heat exchanger using a helium-water test loop and numerical simulations[J]. Applied Thermal Engineering, 2011, 31(17/18): 4064-4073. |
11 | Lee S M, Kim K Y. A parametric study of the thermal-hydraulic performance of a zigzag printed circuit heat exchanger[J]. Heat Transfer Engineering, 2014, 35(13): 1192-1200. |
12 | Chen M H, Sun X D, Christensen R N. Thermal-hydraulic performance of printed circuit heat exchangers with zigzag flow channels[J]. International Journal of Heat and Mass Transfer, 2019, 130: 356-367. |
17 | 谢丽懿, 李智强, 丁国良. FLNG用印刷板路换热器技术特点及发展趋势[J]. 化工学报, 2019, 70(11): 4101-4112. |
Xie L Y, Li Z Q, Ding G L. Technical characteristics and development trend of printed circuit heat exchanger for FLNG[J]. CIESC Journal, 2019, 70(11): 4101-4112. | |
18 | 杨光, 邵卫卫. 印刷电路板换热器结构及传热关联式研究进展[J]. 化工进展, 2021, 40(S1): 13-26. |
Yang G, Shao W W. Review of optimization and heat transfer correlations of printed circuit heat exchanger[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 13-26. | |
19 | Tang L H, Yang B H, Pan J, et al. Thermal performance analysis in a zigzag channel printed circuit heat exchanger under different conditions[J]. Heat Transfer Engineering, 2022, 43(7): 567-583. |
20 | Khan H H, M A A, Sharma A, et al. Thermal-hydraulic characteristics and performance of 3D wavy channel based printed circuit heat exchanger[J]. Applied Thermal Engineering, 2015, 87: 519-528. |
21 | Lee S M, Kim K Y. Comparative study on performance of a zigzag printed circuit heat exchanger with various channel shapes and configurations[J]. Heat and Mass Transfer, 2013, 49(7): 1021-1028. |
22 | Ma T, Li L, Xu X Y, et al. Study on local thermal–hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature[J]. Energy Conversion and Management, 2015, 104: 55-66. |
23 | Yoon S H, No H C, Kang G B. Assessment of straight, zigzag, S-shape, and airfoil PCHEs for intermediate heat exchangers of HTGRs and SFRs[J]. Nuclear Engineering and Design, 2014, 270: 334-343. |
24 | Meshram A, Jaiswal A K, Khivsara S D, et al. Modeling and analysis of a printed circuit heat exchanger for supercritical CO2 power cycle applications[J]. Applied Thermal Engineering, 2016, 109: 861-870. |
25 | Baik Y J, Jeon S, Kim B, et al. Heat transfer performance of wavy-channeled PCHEs and the effects of waviness factors[J]. International Journal of Heat and Mass Transfer, 2017, 114: 809-815. |
26 | Bartel N, Chen M, Utgikar V P, et al. Comparative analysis of compact heat exchangers for application as the intermediate heat exchanger for advanced nuclear reactors[J]. Annals of Nuclear Energy, 2015, 81: 143-149. |
27 | Yang Y, Li H Z, Yao M Y, et al. Investigation on the effects of narrowed channel cross-sections on the heat transfer performance of a wavy-channeled PCHE[J]. International Journal of Heat and Mass Transfer, 2019, 135: 33-43. |
13 | Kim S G, Lee Y, Ahn Y, et al. CFD aided approach to design printed circuit heat exchangers for supercritical CO2 Brayton cycle application[J]. Annals of Nuclear Energy, 2016, 92: 175-185. |
14 | Kim I H, No H C, Lee J I, et al. Thermal hydraulic performance analysis of the printed circuit heat exchanger using a helium test facility and CFD simulations[J]. Nuclear Engineering and Design, 2009, 239(11): 2399-2408. |
15 | Chen M H, Sun X D, Christensen R N, et al. Pressure drop and heat transfer characteristics of a high-temperature printed circuit heat exchanger[J]. Applied Thermal Engineering, 2016, 108: 1409-1417. |
16 | Wen Z X, Lv Y G, Li Q. Comparative study on flow and heat transfer characteristics of sinusoidal and zigzag channel printed circuit heat exchangers[J]. Science China Technological Sciences, 2020, 63(4): 655-667. |
28 | 徐哲, 张明辉, 段天应, 等. 超临界二氧化碳在印刷电路板式换热器内的流动换热特性研究[J]. 原子能科学技术, 2021, 55(5): 849-855. |
Xu Z, Zhang M H, Duan T Y, et al. Flow and heat transfer characteristic study of supercritical CO2 in printed circuit heat exchanger[J]. Atomic Energy Science and Technology, 2021, 55(5): 849-855. | |
29 | Li Z Z, Liu X J, Shao Y J, et al. Research and development of supercritical carbon dioxide coal-fired power systems[J]. Journal of Thermal Science, 2020, 29(3): 546-575. |
30 | Kwon J G, Kim T H, Park H S, et al. Optimization of airfoil-type PCHE for the recuperator of small scale Brayton cycle by cost-based objective function[J]. Nuclear Engineering and Design, 2016, 298: 192-200. |
31 | Li H Z, Kruizenga A, Anderson M, et al. Development of a new forced convection heat transfer correlation for CO2 in both heating and cooling modes at supercritical pressures[J]. International Journal of Thermal Sciences, 2011, 50(12): 2430-2442. |
32 | Kim D E, Kim M H, Cha J E, et al. Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model[J]. Nuclear Engineering and Design, 2008, 238(12): 3269-3276. |
[1] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[2] | 陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121. |
[3] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[4] | 豆少军, 郝亮. PEMFC催化层耦合气体电荷传输过程的介观模拟[J]. 化工学报, 2024, 75(8): 3002-3010. |
[5] | 陈引, 赵霄, 杜王芳, 杨竹强, 李凯, 赵建福. 喷雾冷却液膜流动特性测试方案优化及传热规律分析[J]. 化工学报, 2024, 75(8): 2734-2743. |
[6] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[7] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
[8] | 朱子良, 王爽, 姜宇昂, 林梅, 王秋旺. 欧拉-拉格朗日迭代固-液相变算法[J]. 化工学报, 2024, 75(8): 2763-2776. |
[9] | 邓爱明, 何玉荣, 唐天琪, 胡彦伟. 导流板对喷雾流化床内颗粒生长过程影响的模拟[J]. 化工学报, 2024, 75(8): 2787-2799. |
[10] | 王倩倩, 李冰, 郑伟波, 崔国民, 赵兵涛, 明平文. 氢燃料电池局部动态特征三维模型[J]. 化工学报, 2024, 75(8): 2812-2820. |
[11] | 毛宇飞, 曹飞, 上官燕琴. 超临界压力流体管内湍流对流传热的计算方法[J]. 化工学报, 2024, 75(8): 2821-2830. |
[12] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
[13] | 李倩, 张蓉民, 林子杰, 战琪, 蔡伟华. 基于机器学习的印刷电路板式换热器流动换热预测与仿真[J]. 化工学报, 2024, 75(8): 2852-2864. |
[14] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[15] | 黄晓峰, 刘朝晖, 杨帆. 高密度碳氢燃料JP-10流动换热及热裂解结焦实验研究[J]. 化工学报, 2024, 75(8): 2917-2928. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 792
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 609
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||