化工学报 ›› 2024, Vol. 75 ›› Issue (5): 1802-1815.DOI: 10.11949/0438-1157.20231069
收稿日期:
2023-10-16
修回日期:
2023-12-23
出版日期:
2024-05-25
发布日期:
2024-06-25
通讯作者:
李娟
作者简介:
李娟(1987—),女,博士,副教授,lijuan87@njfu.edu.cn
基金资助:
Juan LI1(), Yaowen CAO1, Zhangyu ZHU1, Lei SHI2, Jia LI1
Received:
2023-10-16
Revised:
2023-12-23
Online:
2024-05-25
Published:
2024-06-25
Contact:
Juan LI
摘要:
基于鱼类尾鳍在流动过程中的重要作用,仿生设计并建立了正形尾鳍结构微通道物理模型,研究了仿生尾鳍肋间距对微通道综合传热性能的影响,提取了尾鳍结构凹陷长轴相对长度
中图分类号:
李娟, 曹耀文, 朱章钰, 石雷, 李佳. 仿生正形尾鳍结构微通道流动与传热特性数值研究及结构优化[J]. 化工学报, 2024, 75(5): 1802-1815.
Juan LI, Yaowen CAO, Zhangyu ZHU, Lei SHI, Jia LI. Numerical study and structural optimization of microchannel flow and heat transfer characteristics of bionic homocercal fin microchannels[J]. CIESC Journal, 2024, 75(5): 1802-1815.
几何参数 | 尺寸 |
---|---|
尾鳍结构圆直径(Dt) | 1.2 mm |
尾鳍结构凹陷长半轴长(at) | 0.6 mm |
尾鳍结构凹陷短半轴长(bt) | 0.24 mm |
尾鳍结构高度张角(αt) | 180° |
表1 仿生结构几何尺寸
Table 1 Geometric dimensions of the biomimetic structure
几何参数 | 尺寸 |
---|---|
尾鳍结构圆直径(Dt) | 1.2 mm |
尾鳍结构凹陷长半轴长(at) | 0.6 mm |
尾鳍结构凹陷短半轴长(bt) | 0.24 mm |
尾鳍结构高度张角(αt) | 180° |
材料 | 密度/(kg/m3) | 比热容/(J/(kg·K)) | 热导率/(W/(m·K)) |
---|---|---|---|
去离子水 | 998.2 | 4183 | — |
6063铝合金 | 2690 | 900 | 218 |
表2 固液相物性参数
Table 2 Physical properties of solid and liquid
材料 | 密度/(kg/m3) | 比热容/(J/(kg·K)) | 热导率/(W/(m·K)) |
---|---|---|---|
去离子水 | 998.2 | 4183 | — |
6063铝合金 | 2690 | 900 | 218 |
工况 | 进口Reynolds数 | 进口流速/(m/s) | 体积流量/(ml/min) |
---|---|---|---|
1 | 400 | 0.5034 | 90.60 |
2 | 550 | 0.6922 | 124.59 |
3 | 700 | 0.8809 | 158.58 |
4 | 850 | 1.0697 | 192.54 |
5 | 1000 | 1.2585 | 226.53 |
6 | 1150 | 1.4472 | 260.49 |
7 | 1300 | 1.6360 | 294.48 |
表3 实验工况
Table 3 Experimental conditions
工况 | 进口Reynolds数 | 进口流速/(m/s) | 体积流量/(ml/min) |
---|---|---|---|
1 | 400 | 0.5034 | 90.60 |
2 | 550 | 0.6922 | 124.59 |
3 | 700 | 0.8809 | 158.58 |
4 | 850 | 1.0697 | 192.54 |
5 | 1000 | 1.2585 | 226.53 |
6 | 1150 | 1.4472 | 260.49 |
7 | 1300 | 1.6360 | 294.48 |
序号 | 网格数量/个 | 平均摩擦因数(fave,sim) | 摩擦因数误差 | 平均Nusselt数(Nuave,sim) | Nusselt数误差 |
---|---|---|---|---|---|
1 | 118万 | 0.1875 | 2.01% | 7.09 | 6.27% |
2 | 170万 | 0.1860 | 1.29% | 6.86 | 3.12% |
3 | 200万 | 0.1849 | 0.62% | 6.76 | 1.76% |
4 | 252万 | 0.1841 | 0.10% | 6.70 | 0.55% |
5 | 314万 | 0.1840 | — | 6.68 | — |
表4 网格独立性验证
Table 4 Validation of grid independence
序号 | 网格数量/个 | 平均摩擦因数(fave,sim) | 摩擦因数误差 | 平均Nusselt数(Nuave,sim) | Nusselt数误差 |
---|---|---|---|---|---|
1 | 118万 | 0.1875 | 2.01% | 7.09 | 6.27% |
2 | 170万 | 0.1860 | 1.29% | 6.86 | 3.12% |
3 | 200万 | 0.1849 | 0.62% | 6.76 | 1.76% |
4 | 252万 | 0.1841 | 0.10% | 6.70 | 0.55% |
5 | 314万 | 0.1840 | — | 6.68 | — |
x* | Nux,4 | x* | Nux,4 | x* | Nux,4 |
---|---|---|---|---|---|
0.0001 | 26.7 | 0.00714 | 7.63 | 0.025 | 5.87 |
0.0025 | 10.4 | 0.00833 | 7.32 | 0.033 | 5.77 |
0.005 | 8.44 | 0.01 | 7 | 0.05 | 5.62 |
0.00556 | 8.18 | 0.0125 | 6.63 | 0.1 | 5.45 |
0.00625 | 7.92 | 0.0167 | 6.26 | 1 | 5.35 |
表5 热入口段Nusselt数
Table 5 Thermal entry region Nusselt number
x* | Nux,4 | x* | Nux,4 | x* | Nux,4 |
---|---|---|---|---|---|
0.0001 | 26.7 | 0.00714 | 7.63 | 0.025 | 5.87 |
0.0025 | 10.4 | 0.00833 | 7.32 | 0.033 | 5.77 |
0.005 | 8.44 | 0.01 | 7 | 0.05 | 5.62 |
0.00556 | 8.18 | 0.0125 | 6.63 | 0.1 | 5.45 |
0.00625 | 7.92 | 0.0167 | 6.26 | 1 | 5.35 |
参数 | a型 | b型 | c型 | d型 | e型 |
---|---|---|---|---|---|
尾鳍结构数量 | 19 | 17 | 15 | 14 | 13 |
间距/mm | 4 | 4.5 | 5 | 5.5 | 6 |
表6 不同间距微通道参数
Table 6 Different interval parameter of MC-T
参数 | a型 | b型 | c型 | d型 | e型 |
---|---|---|---|---|---|
尾鳍结构数量 | 19 | 17 | 15 | 14 | 13 |
间距/mm | 4 | 4.5 | 5 | 5.5 | 6 |
试验编号 | 因素1 | 因素2 | 因素3 |
---|---|---|---|
1 | 1 | 5 | 7 |
2 | 2 | 10 | 3 |
3 | 3 | 4 | 10 |
4 | 4 | 9 | 6 |
5 | 5 | 3 | 2 |
6 | 6 | 8 | 9 |
7 | 7 | 2 | 5 |
8 | 8 | 7 | 1 |
9 | 9 | 1 | 8 |
10 | 10 | 6 | 4 |
11 | 11 | 11 | 11 |
表7 U11(113)均匀设计
Table 7 U11(113) uniform design
试验编号 | 因素1 | 因素2 | 因素3 |
---|---|---|---|
1 | 1 | 5 | 7 |
2 | 2 | 10 | 3 |
3 | 3 | 4 | 10 |
4 | 4 | 9 | 6 |
5 | 5 | 3 | 2 |
6 | 6 | 8 | 9 |
7 | 7 | 2 | 5 |
8 | 8 | 7 | 1 |
9 | 9 | 1 | 8 |
10 | 10 | 6 | 4 |
11 | 11 | 11 | 11 |
试验编号 | |||||
---|---|---|---|---|---|
1 | 0.40 | 0.129 | 156 | 0.767 | 0.0044 |
2 | 0.42 | 0.159 | 132 | 0.798 | 0.0042 |
3 | 0.44 | 0.123 | 174 | 0.698 | 0.0047 |
4 | 0.46 | 0.153 | 150 | 0.682 | 0.0045 |
5 | 0.48 | 0.117 | 126 | 0.688 | 0.0045 |
6 | 0.50 | 0.147 | 168 | 0.665 | 0.0049 |
7 | 0.52 | 0.111 | 144 | 0.679 | 0.0048 |
8 | 0.54 | 0.141 | 120 | 0.649 | 0.0047 |
9 | 0.56 | 0.105 | 162 | 0.586 | 0.0056 |
10 | 0.58 | 0.135 | 138 | 0.641 | 0.0051 |
11 | 0.60 | 0.165 | 180 | 0.606 | 0.0061 |
表8 尾鳍结构微通道均匀设计
Table 8 Uniform design table for MC-T
试验编号 | |||||
---|---|---|---|---|---|
1 | 0.40 | 0.129 | 156 | 0.767 | 0.0044 |
2 | 0.42 | 0.159 | 132 | 0.798 | 0.0042 |
3 | 0.44 | 0.123 | 174 | 0.698 | 0.0047 |
4 | 0.46 | 0.153 | 150 | 0.682 | 0.0045 |
5 | 0.48 | 0.117 | 126 | 0.688 | 0.0045 |
6 | 0.50 | 0.147 | 168 | 0.665 | 0.0049 |
7 | 0.52 | 0.111 | 144 | 0.679 | 0.0048 |
8 | 0.54 | 0.141 | 120 | 0.649 | 0.0047 |
9 | 0.56 | 0.105 | 162 | 0.586 | 0.0056 |
10 | 0.58 | 0.135 | 138 | 0.641 | 0.0051 |
11 | 0.60 | 0.165 | 180 | 0.606 | 0.0061 |
系数 | MC-T | |
---|---|---|
1.9605 | 0.0148 | |
-3.4258 | -0.0165 | |
1.212×10-3 | -0.1758 | |
-2.969×10-3 | 5.31×10-5 | |
4.6921 | -7.045×10-3 | |
-10.5677 | 0.1775 | |
-4.09×10-3 | 3.28×10-5 | |
1.3994 | 0.5492 | |
0.0355 | -4.135×10-4 | |
-1.7×10-6 | -1.62×10-8 |
表9 热阻及泵功多元二次回归方程系数值
Table 9 Coefficients of multivariate quadratic regression equations for Rtot and Wp
系数 | MC-T | |
---|---|---|
1.9605 | 0.0148 | |
-3.4258 | -0.0165 | |
1.212×10-3 | -0.1758 | |
-2.969×10-3 | 5.31×10-5 | |
4.6921 | -7.045×10-3 | |
-10.5677 | 0.1775 | |
-4.09×10-3 | 3.28×10-5 | |
1.3994 | 0.5492 | |
0.0355 | -4.135×10-4 | |
-1.7×10-6 | -1.62×10-8 |
序号 | |||||
---|---|---|---|---|---|
1 | 0.400 | 0.140 | 120.00 | 0.0147 | 0.652 |
2 | 0.405 | 0.139 | 124.36 | 0.0150 | 0.631 |
3 | 0.409 | 0.139 | 130.28 | 0.0153 | 0.609 |
4 | 0.413 | 0.136 | 132.32 | 0.0156 | 0.598 |
5 | 0.420 | 0.137 | 134.77 | 0.0158 | 0.586 |
6 | 0.423 | 0.137 | 137.00 | 0.0160 | 0.578 |
7 | 0.440 | 0.138 | 133.14 | 0.0162 | 0.572 |
8 | 0.428 | 0.134 | 141.58 | 0.0165 | 0.562 |
9 | 0.470 | 0.138 | 134.14 | 0.0170 | 0.546 |
10 | 0.480 | 0.137 | 135.10 | 0.0172 | 0.536 |
11 | 0.464 | 0.137 | 148.69 | 0.0175 | 0.523 |
12 | 0.468 | 0.137 | 155.99 | 0.0179 | 0.513 |
13 | 0.513 | 0.137 | 141.85 | 0.0183 | 0.502 |
14 | 0.551 | 0.125 | 142.22 | 0.0189 | 0.479 |
15 | 0.554 | 0.121 | 146.30 | 0.0193 | 0.469 |
16 | 0.566 | 0.119 | 154.31 | 0.0201 | 0.456 |
17 | 0.574 | 0.117 | 157.30 | 0.0205 | 0.450 |
18 | 0.600 | 0.121 | 163.78 | 0.0210 | 0.445 |
19 | 0.599 | 0.108 | 161.88 | 0.0219 | 0.439 |
20 | 0.600 | 0.105 | 163.78 | 0.0225 | 0.438 |
表10 尾鳍结构微通道Pareto优化解集
Table 10 Pareto optimized solution set for MC-T
序号 | |||||
---|---|---|---|---|---|
1 | 0.400 | 0.140 | 120.00 | 0.0147 | 0.652 |
2 | 0.405 | 0.139 | 124.36 | 0.0150 | 0.631 |
3 | 0.409 | 0.139 | 130.28 | 0.0153 | 0.609 |
4 | 0.413 | 0.136 | 132.32 | 0.0156 | 0.598 |
5 | 0.420 | 0.137 | 134.77 | 0.0158 | 0.586 |
6 | 0.423 | 0.137 | 137.00 | 0.0160 | 0.578 |
7 | 0.440 | 0.138 | 133.14 | 0.0162 | 0.572 |
8 | 0.428 | 0.134 | 141.58 | 0.0165 | 0.562 |
9 | 0.470 | 0.138 | 134.14 | 0.0170 | 0.546 |
10 | 0.480 | 0.137 | 135.10 | 0.0172 | 0.536 |
11 | 0.464 | 0.137 | 148.69 | 0.0175 | 0.523 |
12 | 0.468 | 0.137 | 155.99 | 0.0179 | 0.513 |
13 | 0.513 | 0.137 | 141.85 | 0.0183 | 0.502 |
14 | 0.551 | 0.125 | 142.22 | 0.0189 | 0.479 |
15 | 0.554 | 0.121 | 146.30 | 0.0193 | 0.469 |
16 | 0.566 | 0.119 | 154.31 | 0.0201 | 0.456 |
17 | 0.574 | 0.117 | 157.30 | 0.0205 | 0.450 |
18 | 0.600 | 0.121 | 163.78 | 0.0210 | 0.445 |
19 | 0.599 | 0.108 | 161.88 | 0.0219 | 0.439 |
20 | 0.600 | 0.105 | 163.78 | 0.0225 | 0.438 |
项目 | ||||||
---|---|---|---|---|---|---|
优化前 | 0.6 | 0.12 | 180 | 0.576 | 0.00560 | |
点1 | 优化后 | 0.405 | 0.139 | 120.37 | 0.786 | 0.00398 |
模拟值 | 0.405 | 0.139 | 120.37 | 0.773 | 0.00404 | |
点2 | 优化后 | 0.437 | 0.132 | 120.91 | 0.744 | 0.00416 |
模拟值 | 0.437 | 0.132 | 120.91 | 0.756 | 0.00398 | |
点3 | 优化后 | 0.476 | 0.135 | 121.01 | 0.698 | 0.00438 |
模拟值 | 0.476 | 0.135 | 121.01 | 0.703 | 0.00456 | |
点4 | 优化后 | 0.511 | 0.133 | 146.96 | 0.649 | 0.00483 |
模拟值 | 0.511 | 0.133 | 146.96 | 0.633 | 0.00497 | |
点5 | 优化后 | 0.554 | 0.112 | 174.99 | 0.592 | 0.00558 |
模拟值 | 0.554 | 0.112 | 174.99 | 0.604 | 0.00534 |
表11 MC-T优化前后的结果对比
Table 11 Comparison of results before and after optimization
项目 | ||||||
---|---|---|---|---|---|---|
优化前 | 0.6 | 0.12 | 180 | 0.576 | 0.00560 | |
点1 | 优化后 | 0.405 | 0.139 | 120.37 | 0.786 | 0.00398 |
模拟值 | 0.405 | 0.139 | 120.37 | 0.773 | 0.00404 | |
点2 | 优化后 | 0.437 | 0.132 | 120.91 | 0.744 | 0.00416 |
模拟值 | 0.437 | 0.132 | 120.91 | 0.756 | 0.00398 | |
点3 | 优化后 | 0.476 | 0.135 | 121.01 | 0.698 | 0.00438 |
模拟值 | 0.476 | 0.135 | 121.01 | 0.703 | 0.00456 | |
点4 | 优化后 | 0.511 | 0.133 | 146.96 | 0.649 | 0.00483 |
模拟值 | 0.511 | 0.133 | 146.96 | 0.633 | 0.00497 | |
点5 | 优化后 | 0.554 | 0.112 | 174.99 | 0.592 | 0.00558 |
模拟值 | 0.554 | 0.112 | 174.99 | 0.604 | 0.00534 |
1 | 于仓仓, 云和明, 崔云杰, 等. 菱形微通道圆盘热沉流动传热的数值模拟研究及优化[J]. 节能, 2022, 41(4): 31-37. |
Yu C C, Yun H M, Cui Y J, et al. Numerical simulation rsearch and optimization of flow and heat transfer in diamond microchannel disk heat sink[J]. Energy Conservation, 2022, 41(4): 31-37. | |
2 | 吉亚萍, 云和明, 郭训虎. 电子元件冷却的场协同分析[J]. 煤气与热力, 2019, 39(6): 20-26. |
Ji Y P, Yun H M, Guo X H. Field synergy analysis of electronic components cooling[J]. Gas & Heat, 2019, 39(6): 20-26. | |
3 | 王宁. 仿生蛛网型微通道散热器结构研究及参数优化[D]. 太原: 中北大学, 2022. |
Wang N. Research on structure and parameter optimization of bionic cobweb micro-channel radiator[D]. Taiyuan: North University of China, 2022. | |
4 | Tuckerman D B, Pease R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
5 | Wang G L, Chen T, Tian M F, et al. Fluid and heat transfer characteristics of microchannel heat sink with truncated rib on sidewall[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119142. |
6 | Li F, Ma Q M, Xin G M, et al. Heat transfer and flow characteristics of microchannels with solid and porous ribs[J]. Applied Thermal Engineering, 2020, 178: 115639. |
7 | 陆卓群, 谢志辉, 王蓉, 等. 单侧内肋阵微通道复合热沉的流动和传热性能分析与构形设计[J]. 工程热物理学报, 2022, 43(11): 2841-2851. |
Lu Z Q, Xie Z H, Wang R, et al. Flow and heat transfer performance analysis and constructal design of hybrid microchannel heat sink with single-sided internal fin array[J]. Journal of Engineering Thermophysics, 2022, 43(11): 2841-2851. | |
8 | Hsieh S S, Hsieh Y C, Hsu Y C, et al. Low Reynolds numbers convective heat transfer enhancement in roughened microchannels[J]. International Communications in Heat and Mass Transfer, 2020, 112: 104486. |
9 | 李金星, 潘治良, 李平. 端部圆角结构提升带针肋微通道热沉均温性[J]. 科学通报, 2018, 63(1): 108-116. |
Li J X, Pan Z L, Li P. Improvement of temperature uniformity in microchannel with pin-fin based on endwall fillet structure[J]. Chinese Science Bulletin, 2018, 63(1): 108-116. | |
10 | 郭勇, 朱传勇, 郭雯, 等. 扰流结构微通道流动沸腾换热特性的数值研究[J]. 工程热物理学报, 2022, 43(5): 1296-1303. |
Guo Y, Zhu C Y, Guo W, et al. Numerical study on heat transfer characteristics of flow boiling in microchannel with turbulence structure[J]. Journal of Engineering Thermophysics, 2022, 43(5): 1296-1303. | |
11 | 李艺凡, 王志鹏. 带有周期性扰流结构的微通道内流动与传热特性[J]. 化工进展, 2022, 41(6): 2893-2901. |
Li Y F, Wang Z P. Flow and heat transfer characteristics in microchannels with periodic fluid disturbance structures[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2893-2901. | |
12 | Pan M Q, Wang H Q, Zhong Y J, et al. Experimental investigation of the heat transfer performance of microchannel heat exchangers with fan-shaped cavities[J]. International Journal of Heat and Mass Transfer, 2019, 134: 1199-1208. |
13 | 范贤光, 黄江尧, 许英杰. 凹槽型微通道传热与流动性能的数值分析[J]. 半导体光电, 2020, 41(2): 232-236, 241. |
Fan X G, Huang J Y, Xu Y J. Numerical analysis on heat transfer and flow characteristics of grooved microchannel[J]. Semiconductor Optoelectronics, 2020, 41(2): 232-236, 241. | |
14 | Zhou F, Zhou W, Qiu Q F, et al. Investigation of fluid flow and heat transfer characteristics of parallel flow double-layer microchannel heat exchanger[J]. Applied Thermal Engineering, 2018, 137: 616-631. |
15 | 王兆奇, 李孟山, 胡海涛, 等. 双排对折型微通道换热器仿真模型开发[J]. 化工学报, 2021, 72(S1): 113-119. |
Wang Z Q, Li M S, Hu H T, et al. Development of simulation model for double row folded microchannel heat exchanger[J]. CIESC Journal, 2021, 72(S1): 113-119. | |
16 | 陈超伟, 王鑫煜, 辛公明. 多孔鳍歧管微通道流动传热特性研究[J]. 制冷学报, 2022, 43(3): 62-70. |
Chen C W, Wang X Y, Xin G M. Flow and heat transfer characteristics in manifold microchannel with porous fins[J]. Journal of Refrigeration, 2022, 43(3): 62-70. | |
17 | 谢文远, 吕晓辰, 李龙, 等. 分级歧管微通道阵列散热器流动与散热特性研究[J]. 航天器工程, 2020, 29(4): 99-107. |
Xie W Y, Lv X C, Li L, et al. Flow and thermal characteristics research on hierarchical manifold microchannel heat sink array[J]. Spacecraft Engineering, 2020, 29(4): 99-107. | |
18 | 陈涛, 王桂莲, 吴永进, 等. 交错内肋微通道的流动和传热特性研究[J]. 热能动力工程, 2022, 37(9): 128-135. |
Chen T, Wang G L, Wu Y J, et al. Study on flow and heat transfer characteristics of microchannels with staggered internal ribs[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(9): 128-135. | |
19 | Chen Y P, Deng Z L. Gas flow in micro tree-shaped hierarchical network[J]. International Journal of Heat and Mass Transfer, 2015, 80: 163-169. |
20 | Xia C H, Fu J Z, Lai J T, et al. Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling[J]. Applied Thermal Engineering, 2015, 90: 1032-1042. |
21 | Mills Z G, Warey A, Alexeev A. Heat transfer enhancement and thermal-hydraulic performance in laminar flows through asymmetric wavy walled channels[J]. International Journal of Heat and Mass Transfer, 2016, 97: 450-460. |
22 | Yu C M, Liu M F, Zhang C H, et al. Bio-inspired drag reduction: from nature organisms to artificial functional surfaces[J]. Giant, 2020, 2: 100017. |
23 | 宋善鹏, 于志家, 刘兴华, 等. 超疏水表面微通道内水的传热特性[J]. 化工学报, 2008, 59(10): 2465-2469. |
Song S P, Yu Z J, Liu X H, et al. Heat transfer characteristics of water flowing in microchannels with super-hydrophobic inner surface[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(10): 2465-2469. | |
24 | Shen X, Zhai Y L, Guo W J, et al. Optimization and thermodynamic analysis of rib arrangement and height for microchannels with sharkskin bionic ribs[J]. Numerical Heat Transfer Part A-Applications, 2023, 84(1): 54-70. |
25 | Li P, Guo D Z, Huang X Y. Heat transfer enhancement, entropy generation and temperature uniformity analyses of shark-skin bionic modified microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118846. |
26 | Gao Q Y, Zou H B, Li J. Numerical investigations of heat transfer and fluid flow characteristics in microchannels with bionic fish-shaped ribs[J]. Processes, 2023, 11(6): 1861. |
27 | Ling H J, Wang Z D. Investigation on thrust force conversion method of oscillating caudal fin based on wake vortex field structure[J]. Applied Bionics and Biomechanics, 2021, 2021: 5561268. |
28 | Xie F R, Zuo Q Y, Chen Q L, et al. Designs of the biomimetic robotic fishes performing body and/or caudal fin (BCF) swimming locomotion: a review[J]. Journal of Intelligent & Robotic Systems, 2021, 102(1): 13. |
29 | Zhang X, Su Y M, Wang Z L. Numerical and experimental studies of influence of the caudal fin shape on the propulsion performance of a flapping caudal fin[J]. Journal of Hydrodynamics, 2011, 23(3): 325-332. |
30 | Shah R K, London A L. Other doubly connected ducts[M]∥Laminar Flow Forced Convection in Ducts. New York: Academic Press, 1978: 341-353. |
31 | Li Z G, Huai X L, Tao Y J, et al. Effects of thermal property variations on the liquid flow and heat transfer in microchannel heat sinks[J]. Applied Thermal Engineering, 2007, 27(17): 2803-2814. |
32 | 刘文竹, 云和明, 王宝雪, 等. 基于场协同和 耗散的微通道拓扑优化研究[J]. 化工学报, 2023, 74(8): 3329-3341. |
Liu W Z, Yun H M, Wang B X, et al. Microchannel topology optimization based on field synergy and entransy[J]. CIESC Journal, 2023, 74(8): 3329-3341. | |
33 | 赵光攀, 向立平, 罗振兵, 等. 不同结构形式微通道热沉的传热性能[J]. 化学工程, 2023, 51(11): 7-12. |
Zhao G P, Xiang L P, Luo Z B, et al. Heat transfer performance of microchannel heat sinks with different structures[J]. Chemical Engineering (China), 2023, 51(11): 7-12. | |
34 | Wang J Y, Yan W, Sang T, et al. Aeroelastic response and structural improvement for heavy-duty truck cab deflectors[C]∥SAE Technical Paper Series. PA, United States: SAE International, 2019. |
35 | 张国秋, 王文璇. 均匀试验设计方法应用综述[J]. 数理统计与管理, 2013, 32(1): 89-99. |
Zhang G Q, Wang W X. A citation review on the uniform experimental design[J]. Journal of Applied Statistics and Management, 2013, 32(1): 89-99. | |
36 | 杜双奎. 试验优化设计与统计分析[M]. 2版. 北京: 科学出版社, 2020. |
Du S K. Experimental Design and Statistical Analysis[M]. 2nd ed. Beijing: Science Press, 2020. | |
37 | Yan Y F, Yan H Y, Yin S Y, et al. Single/multi-objective optimizations on hydraulic and thermal management in micro-channel heat sink with bionic Y-shaped fractal network by genetic algorithm coupled with numerical simulation[J]. International Journal of Heat and Mass Transfer, 2019, 129(15): 468-479. |
38 | Yao P T, Zhai Y L, Li Z H, et al. Thermal performance analysis of multi-objective optimized microchannels with triangular cavity and rib based on field synergy principle[J]. Case Studies in Thermal Engineering, 2021, 25: 100963. |
[1] | 王金山, 王世学, 朱禹. 冷却表面温差对高温质子交换膜燃料电池性能的影响[J]. 化工学报, 2024, 75(5): 2026-2035. |
[2] | 李怡菲, 董新宇, 王为术, 刘璐, 赵一璠. 微肋板表面干冰升华喷雾冷却传热数值模拟[J]. 化工学报, 2024, 75(5): 1830-1842. |
[3] | 刘帆, 张芫通, 陶成, 胡成玉, 杨小平, 魏进家. 歧管式射流微通道液冷散热性能[J]. 化工学报, 2024, 75(5): 1777-1786. |
[4] | 李静, 张方芳, 王帅帅, 徐建华, 张朋远. 凹腔结构对正丁烷部分预混火焰可燃极限的影响[J]. 化工学报, 2024, 75(5): 2081-2090. |
[5] | 谢磊, 徐永生, 林梅. 不同截面肋柱-软尾结构单相流动传热比较[J]. 化工学报, 2024, 75(5): 1787-1801. |
[6] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[7] | 王文雅, 张玮, 楼小玲, 钟若菲, 陈冰冰, 贠军贤. 纳米纤维素嵌合型晶胶微球的多微管成形与模拟[J]. 化工学报, 2024, 75(5): 2060-2071. |
[8] | 赵金鹏, 张永民, 兰斌, 罗节文, 赵碧丹, 王军武. 气固鼓泡床结构双流体传热模型及其模拟验证[J]. 化工学报, 2024, 75(4): 1497-1507. |
[9] | 吉笑盈, 郑园, 李晓鹏, 杨振, 张维, 邱诗蕊, 张倩颖, 罗沧海, 孙东鹏, 陈东, 李东亮. 微流控可控制备液滴、颗粒和胶囊及其应用[J]. 化工学报, 2024, 75(4): 1455-1468. |
[10] | 谷世良, 谭博仁, 程全中, 姚玮洁, 董志鹏, 许峰, 王勇. 轴流泵式混合室内水力学特征的数值模拟[J]. 化工学报, 2024, 75(3): 815-822. |
[11] | 陈彦松, 阮达, 刘渊博, 郑通, 张帅帅, 马学虎. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835. |
[12] | 徐百平, 梁瑞凤, 喻慧文, 吴桂群, 肖书平. 双螺杆挤出机强化三角形转子作用下的腔内分布混合模拟[J]. 化工学报, 2024, 75(3): 858-866. |
[13] | 陈饶, 赵鑫, 陈戴欣, 姜圣坤, 廉应江, 王金波, 杨梅, 陈光文. 微反应器内甲苯连续二硝化制备二硝基甲苯[J]. 化工学报, 2024, 75(3): 867-876. |
[14] | 邓志诚, 许世峰, 王淇冬, 王家瑞, 王斯民. 浸没燃烧处理高盐高化学需氧量废水过程与能耗分析[J]. 化工学报, 2024, 75(3): 1000-1008. |
[15] | 屠楠, 刘晓群, 王驰宇, 方嘉宾. 连续进出料鼓泡流化床停留时间分布的相似准则研究[J]. 化工学报, 2024, 75(2): 543-552. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||