化工学报 ›› 2024, Vol. 75 ›› Issue (8): 2875-2885.DOI: 10.11949/0438-1157.20240222
李彦熹(), 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦(
)
收稿日期:
2024-03-01
修回日期:
2024-06-09
出版日期:
2024-08-25
发布日期:
2024-08-21
通讯作者:
郭烈锦
作者简介:
李彦熹(1995—),男,博士研究生,leeyanxi24@stu.xjtu.edu.cn
基金资助:
Yanxi LI(), Yechun WANG, Xiangdong XIE, Jinzhi WANG, Jiang WANG, Yu ZHOU, Yingxiu PAN, Wentao DING, Liejin GUO(
)
Received:
2024-03-01
Revised:
2024-06-09
Online:
2024-08-25
Published:
2024-08-21
Contact:
Liejin GUO
摘要:
为实现宽流量范围下气液两相流的高效分离,基于螺旋线理论设计出了一种新型蜗壳式多通道旋流分离器,并对其结构进行了优化设计。采用数值模拟方法将其与传统单入口气液旋流分离器进行性能对比,结果表明,新型蜗壳式多通道旋流分离器能有效解决单个入口所引起的空气核偏心现象及振荡问题,分离器内流场在不同入口含气率条件下均具有显著的轴对称特点,稳定性也更高,溢流带液量明显下降。虽然整体压损更大,但能够有效抑制二次流的产生,且在入口含气率越高时抑制效果越明显。
中图分类号:
李彦熹, 王晔春, 谢向东, 王进芝, 王江, 周煜, 潘盈秀, 丁文涛, 郭烈锦. 蜗壳式多通道气液旋流分离器结构优化及分离特性研究[J]. 化工学报, 2024, 75(8): 2875-2885.
Yanxi LI, Yechun WANG, Xiangdong XIE, Jinzhi WANG, Jiang WANG, Yu ZHOU, Yingxiu PAN, Wentao DING, Liejin GUO. Study on separation characteristics and structure optimization of a volute type multi-channel gas-liquid cyclone separator[J]. CIESC Journal, 2024, 75(8): 2875-2885.
图5 8个通道的气、水流量标准差及整体压损随入口含气率的变化趋势
Fig.5 The trend of standard deviation of gas and water flow in 8-channels and overall pressure loss with the variation of inlet gas content
图6 8个通道的气、水流量标准差及整体压损随通道入口夹角的变化趋势
Fig.6 The trend of standard deviation of gas and water flow in 8-channels and overall pressure loss with the variation of channel inlet angle
图11 两种旋流分离器在不同入口含气率下的YZ截面切向速度云图
Fig.11 YZ cross-sectional tangential velocity contours of two types of cyclone separators at different inlet gas contents
入口含气率 | 单入口旋流分离器 | 蜗壳式多通道旋流分离器 | ||||
---|---|---|---|---|---|---|
溢流带液量/(L/min) | 底流含气率/% | 整体压损/Pa | 溢流带液量/(L/min) | 底流含气率/% | 整体压损/Pa | |
0.125 | 1.37 | 0.08 | 10462 | 0.32 | 0.01 | 41525 |
0.462 | 0.35 | 0.25 | 15901 | 0.05 | 0.07 | 67542 |
0.667 | 0.06 | 0.37 | 23406 | 0 | 0.09 | 106876 |
表1 分离器评价指标对比
Table 1 Comparison of separator evaluation indicators
入口含气率 | 单入口旋流分离器 | 蜗壳式多通道旋流分离器 | ||||
---|---|---|---|---|---|---|
溢流带液量/(L/min) | 底流含气率/% | 整体压损/Pa | 溢流带液量/(L/min) | 底流含气率/% | 整体压损/Pa | |
0.125 | 1.37 | 0.08 | 10462 | 0.32 | 0.01 | 41525 |
0.462 | 0.35 | 0.25 | 15901 | 0.05 | 0.07 | 67542 |
0.667 | 0.06 | 0.37 | 23406 | 0 | 0.09 | 106876 |
1 | 金向红, 金有海, 王建军, 等. 气液旋流分离技术的研究[J]. 新技术新工艺, 2007(8): 85-88, 4. |
Jin X H, Jin Y H, Wang J J, et al. Research of gas-liquid cyclone separation technology[J]. New Technology & New Process, 2007(8): 85-88, 4. | |
2 | 李吉玉, 魏东, 朱继光, 等. UASB-生物接触氧化工艺处理制药废水实例[J]. 环境污染与防治, 2008, 30(10): 103-105. |
Li J Y, Wei D, Zhu J G, et al. Example of UASB-biological contact oxidation process for pharmaceutical wastewater treatment[J]. Environmental Pollution & Control, 2008, 30(10): 103-105. | |
3 | Yamamoto T, Oshikawa T, Yoshida H, et al. Improvement of particle separation performance by new type hydro cyclone[J]. Separation and Purification Technology, 2016, 158: 223-229. |
4 | Ghodrat M, Kuang S B, Yu A B, et al. Numerical analysis of hydrocyclones with different conical section designs[J]. Minerals Engineering, 2014, 62: 74-84. |
5 | Gruselle F, Steimes J, Hendrick P. An innovative two-phase flow pump and separator solution[C]//ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Vancouver, British Columbia, Canada, 2012: 1079-1088. |
6 | Steimes J, Gruselle F, Hendrick P. Performance study of an air-oil pump and separator solution[C]//ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. Copenhagen, Denmark, 2013: 103-112. |
7 | Gao X, Chen J F, Feng J M, et al. Numerical and experimental investigations of the effects of the breakup of oil droplets on the performance of oil-gas cyclone separators in oil-injected compressor systems[J]. International Journal of Refrigeration, 2013, 36(7): 1894-1904. |
8 | Lu Y G, Hu J P. Numerical simulation for air/oil separator of aero-engine[J]. Applied Mechanics and Materials, 2014, 510: 197-201. |
9 | Meng J J, Luo Y, Yan G, et al. Numerical simulation on the effect of inlet-collision in oil-gas separator used for air-conditioning system[J]. Applied Mechanics and Materials, 2013, 448/449/450/451/452/453: 3378-3381. |
10 | 田晓庆, 何宏舟. 旋风分离器入口结构影响的研究现状与进展[J]. 过滤与分离, 2013, 23(2): 4-8, 34. |
Tian X Q, He H Z. Research status and progress on effects of cyclone separator's inlet structure[J]. Journal of Filtration & Separation, 2013, 23(2): 4-8, 34. | |
11 | Xiang R B, Lee K W. Numerical study of flow field in cyclones of different height[J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(8): 877-883. |
12 | Lim K S, Kim H S, Lee K W. Characteristics of the collection efficiency for a cyclone with different vortex finder shapes[J]. Journal of Aerosol Science, 2004, 35(6): 743-754. |
13 | 王庆锋, 李凯, 郝帅, 等. MVR系统中管柱式气液旋流分离器性能研究[J]. 化工进展, 2016, 35(S2): 87-91. |
Wang Q F, Li K, Hao S, et al. Performance study of the gas-liquid column cyclone in MVR system[J]. Chemical Industry and Engineering Progress, 2016, 35(S2): 87-91. | |
14 | 宋健斐, 魏耀东, 时铭显. 蜗壳式旋风分离器内气相流场非轴对称特性分析[J]. 化工学报, 2007, 58(5): 1091-1096. |
Song J F, Wei Y D, Shi M X. Analysis of asymmetry of gas-phase flow field in volute cyclone[J]. Journal of Chemical Industry and Engineering (China), 2007, 58(5): 1091-1096. | |
15 | Yoshida H, Yoshikawa S, Fukui K, et al. Effect of multi-inlet flow on particle classification performance of hydro-cyclones[J]. Powder Technology, 2008, 184(3): 352-360. |
16 | Zhao B T, Shen H G, Kang Y M. Development of a symmetrical spiral inlet to improve cyclone separator performance[J]. Powder Technology, 2004, 145(1): 47-50. |
17 | Zhao B, Su Y, Zhang J. Simulation of gas flow pattern and separation efficiency in cyclone with conventional single and spiral double inlet configuration[J]. Chemical Engineering Research and Design, 2006, 84(12): 1158-1165. |
18 | Nassaj O R, Toghraie D, Afrand M. Effects of multi inlet guide channels on the performance of a cyclone separator[J]. Powder Technology, 2019, 356: 353-372. |
19 | Safikhani H, Zamani J, Musa M. Numerical study of flow field in new design cyclone separators with one, two and three tangential inlets[J]. Advanced Powder Technology, 2018, 29(3): 611-622. |
20 | 何克轩. 多入口气液旋风分离器的模拟研究[D]. 北京: 中国石油大学(北京), 2022. |
He K X. Numerical study on multi-inlet gas-liquid cyclone separator[D]. Beijing: China University of Petroleum, 2022. | |
21 | 王振兴, 毕荣山, 李玉刚, 等. 入口形状对旋风分离器性能的影响[J]. 青岛科技大学学报(自然科学版), 2012, 33(3): 277-281. |
Wang Z X, Bi R S, Li Y G, et al. Effects of inlet shape on the performance of cyclone[J]. Journal of Qingdao University of Science and Technology (Natural Science Edition), 2012, 33(3): 277-281. | |
22 | Elsayed K, Lacor C. The effect of cyclone inlet dimensions on the flow pattern and performance[J]. Applied Mathematical Modelling, 2011, 35(4): 1952-1968. |
23 | Gao Z W, Wang J, Wang J Y, et al. Analysis of the effect of vortex on the flow field of a cylindrical cyclone separator[J]. Separation and Purification Technology, 2019, 211: 438-447. |
24 | 凌光磊, 刘云峰, 黄涛, 等. 旋风分离器蜗壳半径对物料分离性能的影响[J]. 矿山机械, 2023, 51(1): 45-51. |
Ling G L, Liu Y F, Huang T, et al. Influence of radius of volute of cyclone separator on material separation performance[J]. Mining & Processing Equipment, 2023, 51(1): 45-51. | |
25 | 潘地林, 丁维龙, 许云龙. 离心式通风机蜗壳型线设计方法的理论分析与试验研究[J]. 流体机械, 2002, 30(4): 4-7. |
Pan D L, Ding W L, Xu Y L. Theoretical and experimental studies of design methods for centrifugal volutes[J]. Fluid Machinery, 2002, 30(4): 4-7. | |
26 | 于哲, 杨锐. 汽轮机切向进汽蜗壳设计方法研究[J]. 热力透平, 2021, 50(2): 111-116. |
Yu Z, Yang R. Design method of tangential steam inlet volute in steam turbine[J]. Thermal Turbine, 2021, 50(2): 111-116. | |
27 | Liu L X, Zhang W. Numerical simulation of gas-liquid two-phase flow in recycling cyclone separator with different structure[J]. International Journal of Modelling, Identification and Control, 2015, 23(4): 316. |
28 | 王强强. 管式旋流气液分离器内部流动形态与分离机理研究[D]. 北京: 北京化工大学, 2022. |
Wang Q Q. Study on the flow behavior and separation mechanism of inline cyclone gas-liquid separator[D]. Beijing: Beijing University of Chemical Technology, 2022. | |
29 | Erdal F M. Local measurements and computational fluid dynamics simulations in a gas-liquid cylindrical cyclone separator[D]. Tulsa: The University of Tulsa, 2001. |
30 | Xie X D, Wang Y C, Wang J Z, et al. Investigation on the formation mechanism and flow characteristics of liquid carry-over in gas-liquid cyclone separator[J]. Physics of Fluids, 2023, 35(12): 123317. |
31 | Wang J Z, Wang Y C, Xie X D, et al. Investigation on separation characteristics of gas-liquid two-phase flow around the perforated tube[J]. Nuclear Engineering and Design, 2023, 404: 112200. |
32 | Wang J Z, Wang Y C, Han J Z, et al. Experimental investigation on separation characteristics of axial cyclone separator[J]. Science China Technological Sciences, 2023, 66(11): 3231-3244. |
33 | Wang J Z, Wang Y C, Xie X D, et al. Experimental investigation on the separation characteristics of the novel combined separator[J]. Nuclear Engineering and Design, 2024, 417: 112834. |
34 | 庞力平. 气液两相流联箱中流量分配的理论和实验研究[D]. 北京: 华北电力大学, 2010. |
Pang L P. Theoretical and experimental investigation on flow distribution in gas-liquid two-phase flow manifold[D]. Beijing: North China Electric Power University, 2010. | |
35 | Kouba G E, Shoham O. A review of gas-liquid cylindrical cyclone (GLCC) technology[C]//Production Separation Systems International Conference. Aberdeen, England, 1996: 23-24. |
36 | 郑春峰, 杨万有, 孟熙然, 等. 海上高含气井新型井下气液分离器设计及性能评价[J]. 中国海上油气, 2020, 32(6): 128-135. |
Zheng C F, Yang W Y, Meng X R, et al. Design and performance evaluation of a novel downhole gas-liquid separator for offshore high gas bearing wells[J]. China Offshore Oil and Gas, 2020, 32(6): 128-135. | |
37 | 张小彬. 航空发动机用动压式油气分离器性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. |
Zhang X B. The research on performance of dynamic pressure type gas-oil separator in aero-engine[D]. Harbin: Harbin Engineering University, 2018. | |
38 | 郭雪岩, 王斌杰, 杨帆. 水力旋流器流场大涡模拟及其结构改进[J]. 排灌机械工程学报, 2013, 31(8): 696-701. |
Guo X Y, Wang B J, Yang F. LES analyses of flow fields and structure improvements of hydrocyclones[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(8): 696-701. | |
39 | Qian F P, Wu Y P. Effects of the inlet section angle on the separation performance of a cyclone[J]. Chemical Engineering Research and Design, 2009, 87(12): 1567-1572. |
[1] | 王皓宇, 杨杨, 荆文婕, 杨斌, 唐雨, 刘毅. 不同旋流器作用下气液螺旋环状流动特性研究[J]. 化工学报, 2024, 75(8): 2744-2755. |
[2] | 赵亮, 李雨桥, 张德, 沈胜强. 螺旋喷嘴内外流场特性的实验研究[J]. 化工学报, 2024, 75(8): 2777-2786. |
[3] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[4] | 曲玖哲, 杨鹏, 杨绪飞, 张伟, 宇波, 孙东亮, 王晓东. 硅基微柱簇阵列微通道流动沸腾实验研究[J]. 化工学报, 2024, 75(8): 2840-2851. |
[5] | 吕方明, 包志铭, 王博文, 焦魁. 气体扩散层侵入流道对燃料电池水管理影响研究[J]. 化工学报, 2024, 75(8): 2929-2938. |
[6] | 李新泽, 张双星, 杨洪海, 杜文静. 基于电池冷却用新型脉动热管性能的实验研究[J]. 化工学报, 2024, 75(6): 2222-2232. |
[7] | 黄志鸿, 周利, 柴士阳, 吉旭. 耦合加氢装置优化的多周期氢网络集成[J]. 化工学报, 2024, 75(5): 1951-1965. |
[8] | 关朝阳, 黄国庆, 张一喃, 陈宏霞, 杜小泽. 泡沫铜导离气泡强化流动沸腾换热实验研究[J]. 化工学报, 2024, 75(5): 1765-1776. |
[9] | 师毓辉, 邢继远, 姜雪晗, 叶爽, 黄伟光. 基于PBM的离心式叶轮内气泡破碎合并数值模拟[J]. 化工学报, 2024, 75(5): 1816-1829. |
[10] | 陈思睿, 毕景良, 王雷, 李元媛, 陆规. 气液两相流流型特征无监督提取的卷积自编码器:机理及应用[J]. 化工学报, 2024, 75(3): 847-857. |
[11] | 陈彦松, 阮达, 刘渊博, 郑通, 张帅帅, 马学虎. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835. |
[12] | 李乃良, 刘常松, 杜雪平, 张一帆, 韩东太. 基于Hurst指数的严重段塞流多尺度分形特性[J]. 化工学报, 2024, 75(2): 484-492. |
[13] | 李文俊, 赵中阳, 倪震, 周灿, 郑成航, 高翔. 基于气-液传质强化的湿法烟气脱硫CFD模拟研究[J]. 化工学报, 2024, 75(2): 505-519. |
[14] | 刘志鹏, 赵长颖, 吴睿, 张智昊. 基于水电解制氢的梯度多孔传输层中气液流动可视化实验研究[J]. 化工学报, 2024, 75(2): 520-530. |
[15] | 詹小斌, 王会彬, 蒋亚龙, 史铁林. 声共振混合器高黏度流体混合的功耗特性研究[J]. 化工学报, 2024, 75(2): 531-542. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 407
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 196
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||