化工学报 ›› 2024, Vol. 75 ›› Issue (S1): 76-84.DOI: 10.11949/0438-1157.20240666
胡俭1(), 姜静华2, 范生军1, 刘建浩1, 邹海江3, 蔡皖龙2, 王沣浩2(
)
收稿日期:
2024-06-17
修回日期:
2024-08-07
出版日期:
2024-12-25
发布日期:
2024-12-17
通讯作者:
王沣浩
作者简介:
胡俭(1986—),男,高级工程师,402294012@qq.com
基金资助:
Jian HU1(), Jinghua JIANG2, Shengjun FAN1, Jianhao LIU1, Haijiang ZOU3, Wanlong CAI2, Fenghao WANG2(
)
Received:
2024-06-17
Revised:
2024-08-07
Online:
2024-12-25
Published:
2024-12-17
Contact:
Fenghao WANG
摘要:
基于开源数值模拟计算软件OpenGeoSys建立了充分考虑中深层U型地埋管换热器尺寸特征与复杂地质参数分布的三维数值计算模型,开展了换热器长期取热过程逐时出口水温及取热性能影响因素分析。热性能测试分析结果表明,运行初期换热器出口水温快速下降,随着取热进程不断推进换热器出口水温逐渐平稳。敏感性分析表明,地温梯度、上下行井钻井深度及水平对接井长度对中深层U型地埋管换热器取热性能影响显著。相关研究结论可为中深层U型地埋管工程设计及技术应用提供参考。
中图分类号:
胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84.
Jian HU, Jinghua JIANG, Shengjun FAN, Jianhao LIU, Haijiang ZOU, Wanlong CAI, Fenghao WANG. Research on heat extraction performance of deep U-type borehole heat exchanger[J]. CIESC Journal, 2024, 75(S1): 76-84.
岩土深度/m | 热导率/(W/(m·K)) | 密度/(kg/m3) | 比热容/(J/(kg·K)) |
---|---|---|---|
0~420 | 1.8 | 1400 | 920 |
420~1000 | 3.5 | 1780 | 1379 |
1000~1580 | 2.6 | 2030 | 1450 |
1580~2000 | 2.6 | 1510 | 1300 |
2000~2500 | 2.6 | 2600 | 878 |
表1 河北工程大学区域地质情况
Table 1 Regional geology of Hebei University of Engineering
岩土深度/m | 热导率/(W/(m·K)) | 密度/(kg/m3) | 比热容/(J/(kg·K)) |
---|---|---|---|
0~420 | 1.8 | 1400 | 920 |
420~1000 | 3.5 | 1780 | 1379 |
1000~1580 | 2.6 | 2030 | 1450 |
1580~2000 | 2.6 | 1510 | 1300 |
2000~2500 | 2.6 | 2600 | 878 |
参数 | 数值 |
---|---|
钻井深度/m | 2500.0 |
对接井长度/m | 684.0 |
下行井管径/mm | 311.7 |
对接井管径/mm | 168.3 |
上行井管径/mm | 244.5 |
钻孔直径/mm | 444.5 |
管材热导率/(W/(m·K)) | 41.0 |
回填材料热导率/(W/(m·K)) | 1.5 |
表2 河北工程大学地热科研项目完井基本数据
Table 2 Basic completion data of geothermal research project of Hebei University of Engineering
参数 | 数值 |
---|---|
钻井深度/m | 2500.0 |
对接井长度/m | 684.0 |
下行井管径/mm | 311.7 |
对接井管径/mm | 168.3 |
上行井管径/mm | 244.5 |
钻孔直径/mm | 444.5 |
管材热导率/(W/(m·K)) | 41.0 |
回填材料热导率/(W/(m·K)) | 1.5 |
图4 不同上下行井钻井深度下中深层U型地埋管换热器出口水温
Fig.4 Outlet water temperature of deep U-type borehole heat exchanger under different drilling depths of descending and ascending wells
图5 不同上下行井钻井深度下中深层U型地埋管换热器取热性能
Fig.5 Heat extraction performance of deep U-type borehole heat exchanger under different drilling depths of descending and ascending wells
图6 不同水平对接井长度下中深层U型地埋管换热器出口水温
Fig.6 Outlet water temperature of deep U-type borehole heat exchanger under different drilling depths of horizontal wells
图7 不同水平对接井长度下中深层U型地埋管换热器取热性能
Fig.7 Heat extraction performance of deep U-type borehole heat exchanger under different drilling depths of horizontal wells
1 | 张海龙. 中国新能源发展研究[D]. 长春: 吉林大学, 2014. |
Zhang H L. Research on the new energy development in China[D]. Changchun: Jilin University, 2014. | |
2 | Cai W L, Wang F H, Chen S, et al. Analysis of heat extraction performance and long-term sustainability for multiple deep borehole heat exchanger array: a project-based study[J]. Applied Energy, 2021, 289: 116590. |
3 | 陈焰华, 於仲义. 从建筑碳排放达峰看地热能的技术特性[J]. 暖通空调, 2022, 52(1): 75-80. |
Chen Y H, Yu Z Y. Study on technical characteristics of geothermal energy from building carbon emission peak[J]. Heating Ventilating & Air Conditioning, 2022, 52(1): 75-80. | |
4 | Wang R F, Wang F H, Xue Y Z, et al. Numerical study on the long-term performance and load imbalance ratio for medium-shallow borehole heat exchanger system[J]. Energies, 2022, 15(9): 3444. |
5 | 鲍玲玲, 王雪, 刘俊青, 等. 基于岩土纵向分层的中深层U型地埋管换热器取热性能研究[J]. 地球物理学进展, 2022, 37(4): 1371-1378. |
Bao L L, Wang X, Liu J Q, et al. Research on heat extraction performance of U-shaped underground heat exchanger based on longitudinal layering of rock and soil[J]. Progress in Geophysics, 2022, 37(4): 1371-1378. | |
6 | 李俊岩. 中深层地热用深U型地埋管换热器取热特性研究[D]. 邯郸: 河北工程大学, 2021. |
Li J Y. Study on heat extraction characteristics of vertical deep-buried U-bend pipe heat exchangers for middle-deep geothermal[D]. Handan: Hebei University of Engineering, 2021. | |
7 | Zhang Y P, Huang S P, Meng X Z, et al. Geothermal characteristics of two deep U-shaped downhole heat exchangers in the Weihe Basin, China[J]. IOP Conference Series: Earth and Environmental Science, 2020, 463(1): 012156. |
8 | 王少锋, 申小龙, 赵真, 等. 黄陵地区中深层地热能赋存与U形井岩-水换热潜力分析[J]. 中国煤炭地质, 2022, 34(6): 40-45, 72. |
Wang S F, Shen X L, Zhao Z, et al. Medium deep geothermal energy hosting and U-shaped well rock-water heat transfer potential analysis in Huangling area[J]. Coal Geology of China, 2022, 34(6): 40-45, 72. | |
9 | Li C, Guan Y L, Feng Y G, et al. Comparison of influencing factors and level optimization for heating through deep-buried pipe based on Taguchi method[J]. Geothermics, 2021, 91: 102045. |
10 | 张育平, 刘俊, 王沣浩, 等. 中深层U型对接井取热能力影响因素显著性分析[J]. 可再生能源, 2022, 40(11): 1473-1480. |
Zhang Y P, Liu J, Wang F H, et al. Significance analysis on the influence factors of thermal extraction capacity of medium-deep U-shaped butted well[J]. Renewable Energy Resources, 2022, 40(11): 1473-1480. | |
11 | Hu X C, Banks J, Guo Y T, et al. Effects of temperature-dependent property variations on the output capacity prediction of a deep coaxial borehole heat exchanger[J]. Renewable Energy, 2021, 165: 334-349. |
12 | 姜静华, 高远, 张育平, 等. 中深层套管式地埋管换热器取热性能研究及经济性分析[J]. 西安建筑科技大学学报(自然科学版), 2021, 53(6): 851-859. |
Jiang J H, Gao Y, Zhang Y P, et al. Research on heat extraction performance of deep coaxial borehole heat exchanger and its economic analysis[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2021, 53(6): 851-859. | |
13 | Chen C F, Shao H B, Naumov D, et al. Numerical investigation on the performance, sustainability, and efficiency of the deep borehole heat exchanger system for building heating[J]. Geothermal Energy, 2019, 7: 18. |
14 | Li M, Lai A C K. Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): a perspective of time and space scales[J]. Applied Energy, 2015, 151: 178-191. |
15 | Kolditz O, Bauer S, Bilke L, et al. OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media[J]. Environmental Earth Sciences, 2012, 67: 589-599. |
16 | Chen C F, Cai W L, Naumov D, et al. Numerical investigation on the capacity and efficiency of a deep enhanced U-tube borehole heat exchanger system for building heating[J]. Renewable Energy, 2021, 169: 557-572. |
17 | 王雪. 中深层U型井下换热器热渗耦合传热性能研究[D]. 邯郸: 河北工程大学, 2022. |
Wang X. Study on heat transfer performance of medium-deep U-type borehole heat exchanger under the coupling condition of thermal permeability[D]. Handan: Hebei University of Engineering, 2022. | |
18 | Gu F, Li Y W, Tang D Z, et al. Heat extraction performance of horizontal-well deep borehole heat exchanger and comprehensive comparison with the vertical well[J]. Applied Thermal Engineering, 2022, 211: 118426. |
19 | Liu J, Wang F H, Cai W L, et al. Numerical investigation on the effects of geological parameters and layered subsurface on the thermal performance of medium-deep borehole heat exchanger[J]. Renewable Energy, 2020, 149: 384-399. |
20 | Luo Y Q, Xu G Z, Zhang S C, et al. Heat extraction and recover of deep borehole heat exchanger: negotiating with intermittent operation mode under complex geological conditions[J]. Energy, 2022, 241: 122510. |
21 | Zhang W, Li W, Sørensen B R, et al. Comparative analysis of heat transfer performance of coaxial pipe and U-type deep borehole heat exchangers[J]. Geothermics, 2021, 96: 102220. |
22 | 关春敏. 中深层U型井地源热泵的传热分析及系统优化[D]. 济南: 山东建筑大学, 2022. |
Guan C M. Heat transfer analysis and system optimization of the medium-deep U-type ground source heat pump[D]. Jinan: Shandong Jianzhu University, 2022. | |
23 | Xia Z H, Jia G S, Ma Z D, et al. Analysis of economy, thermal efficiency and environmental impact of geothermal heating system based on life cycle assessments[J]. Applied Energy, 2021, 303: 117671. |
24 | 王兴, 李超, 官燕玲, 等. 竖向U型深埋管建筑供暖连续及间歇运行的现场实验[J]. 区域供热, 2018(3): 8-12, 21. |
Wang X, Li C, Guan Y L, et al. In-situ experiment of continuous and intermittent operation of vertical U-bend deep-buried pipe to supply heat in buildings[J]. District Heating, 2018(3): 8-12, 21. | |
25 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 石油天然气工业 油气井套管或油管用钢管: [S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Petroleum and natural gas industries—steel pipes for use as casing or tubing for wells: [S]. Beijing: Standards Press of China, 2017. | |
26 | 李超, 官燕玲, 杨瑞涛, 等. U型深埋管固井层对埋管换热性能影响的研究[J]. 太阳能学报, 2021, 42(2): 267-273. |
Li C, Guan Y L, Yang R T, et al. Study on influence of cementing layer on heat transfer performance of U-bend deep-buried pipe[J]. Acta Energiae Solaris Sinica, 2021, 42(2): 267-273. | |
27 | Liu J, Wang F H, Gao Y, et al. Influencing factors analysis and operation optimization for the long-term performance of medium-deep borehole heat exchanger coupled ground source heat pump system[J]. Energy and Buildings, 2020, 226: 110385. |
28 | Nian Y L, Cheng W L, Yang X Y, et al. Simulation of a novel deep ground source heat pump system using abandoned oil wells with coaxial BHE[J]. International Journal of Heat and Mass Transfer, 2019, 137: 400-412. |
29 | 张哲菲, 刘洪涛, 刘攀峰, 等. 中深层地热地埋管实际运行影响因素研究[J]. 太阳能学报, 2022, 43(12): 503-509. |
Zhang Z F, Liu H T, Liu P F, et al. Study on actual operation and influencing factors of middle-deep geothermal buried pipe[J]. Acta Energiae Solaris Sinica, 2022, 43(12): 503-509. | |
30 | 王雪婷. 中深层U型埋管换热器传热性能研究[J]. 区域供热, 2021, (5): 20-24, 43. |
Wang X T. Research on heat transfer performance of medium and deep U-type buried tube heat exchanger[J]. District Heating, 2021, (5): 20-24, 43. |
[1] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[2] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
[3] | 李新泽, 张双星, 任冠宇, 洪瑞, 杜文静. 大功率LED热管理用脉动热管热性能[J]. 化工学报, 2024, 75(S1): 126-134. |
[4] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[5] | 黄俊豪, 庞克亮, 孙方远, 刘福军, 谷致远, 韩龙, 段衍泉, 冯妍卉. 干熄炉料钟结构对焦炭布料粒径均匀度影响的模拟研究[J]. 化工学报, 2024, 75(S1): 158-169. |
[6] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[7] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[8] | 李匡奚, 于佩潜, 王江云, 魏浩然, 郑志刚, 冯留海. 微气泡旋流气浮装置内流动分析与结构优化[J]. 化工学报, 2024, 75(S1): 223-234. |
[9] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
[10] | 汪张洲, 唐天琪, 夏嘉俊, 何玉荣. 基于复合相变材料的电池热管理性能模拟[J]. 化工学报, 2024, 75(S1): 329-338. |
[11] | 秦思宇, 刘艺佳, 杨佳成, 佟薇, 金立文, 孟祥兆. 受限蒸汽腔内气液两相传热特性研究[J]. 化工学报, 2024, 75(S1): 47-55. |
[12] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[13] | 陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121. |
[14] | 陈巨辉, 苏潼, 李丹, 陈立伟, 吕文生, 孟凡奇. 翅形扰流片作用下的微通道换热特性[J]. 化工学报, 2024, 75(9): 3122-3132. |
[15] | 钱啸宇, 阮璇, 李水清. 外加电场下电介质颗粒层结构重构与悬浮[J]. 化工学报, 2024, 75(8): 2756-2762. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||