化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4385-4402.DOI: 10.11949/0438-1157.20240624
李宇明1(), 徐砚文1(), 刘红宇1, 马丽娜2, 王雅君1()
收稿日期:
2024-06-06
修回日期:
2024-07-19
出版日期:
2024-12-25
发布日期:
2025-01-03
通讯作者:
王雅君
作者简介:
李宇明(1987—),女,博士,助理研究员,liyuming@cup.edu.cn基金资助:
Yuming LI1(), Yanwen XU1(), Hongyu LIU1, Lina MA2, Yajun WANG1()
Received:
2024-06-06
Revised:
2024-07-19
Online:
2024-12-25
Published:
2025-01-03
Contact:
Yajun WANG
摘要:
近年来,以绿氢为代表的零碳能源的推广与使用已成为国家碳中和发展战略的重要组成部分,大力发展包括电解水制氢技术在内的绿氢能源是我国能源转型的重要研究方向。设计和开发高效催化剂是提升电解水制氢(HER)能力的关键因素。镍基过渡金属磷化物是一类重要的非贵金属电解水催化剂,其中磷空穴(Pv)的存在可以促进H*的解吸,富集催化剂上的电子。同时磷的存在能够降低Ni—H键能,优化析氢活性。这类催化剂不仅在强碱性溶液中,而且在强酸性和中性介质中均具有优异的性能。以镍基磷化物催化剂为基础,介绍了电解水制氢原理及相关催化剂类型,并总结了镍基磷化物中镍、磷物种分别在电解水中的作用机制,可为后续高效镍基电解水催化剂的开发提供一定的理论指导。另一方面,根据镍基磷化物催化剂的制备方法,归纳了镍基磷化物催化剂的制备影响因素,并总结出调整其催化活性的基本策略,包括掺杂金属和非金属元素、制备多金属镍基磷化物以及构建由其他过渡金属磷化物组成的多组分异质结构等。最后讨论了镍基磷化物催化剂在电解水制氢过程中的研究进展,对提高镍基磷化物电解水制氢的催化效率和稳定性提出了一些建议。
中图分类号:
李宇明, 徐砚文, 刘红宇, 马丽娜, 王雅君. 镍基磷化物的合成及其在电解水制氢中的应用[J]. 化工学报, 2024, 75(12): 4385-4402.
Yuming LI, Yanwen XU, Hongyu LIU, Lina MA, Yajun WANG. Synthesis and application of nickel-based phosphide in water electrolysis for hydrogen evolution[J]. CIESC Journal, 2024, 75(12): 4385-4402.
图2 Ni2P(001)、Pt(111)和Ni(111)表面上HER的能量变化(a)[31];Ni2P电极与玻碳、Ti箔和Pt在0.5 mol·L-1 H2SO4中的极化数据(b)[32];Ni2P样品在0.5 mol·L-1 H2SO4中初始和经过100、200、300、400和500次CV扫描后的极化数据(c)[32]
Fig.2 HER energy changes on Ni2P(001), Pt(111) and Ni(111) surfaces (a)[31]; Polarization data of Ni2P electrode with glass carbon, Ti foil and Pt at 0.5 mol·L-1 H2SO4 (b)[32]; Polarization data of Ni2P samples at 0.5 mol·L-1 H2SO4 initially and after 100, 200, 300, 400, and 500 CV scans (c)[32]
编号 | 催化剂 | 前体制备方法 | 磷化方法 | 电解液 | η10/mV | Tafel斜率/(mV·dec-1) | 文献 |
---|---|---|---|---|---|---|---|
1 | HNP NiO/NiCoP | 水热法 | 气固法 | KOH | 112 | 56 | [ |
2 | MS NiCoP | 水热法 | 气固法 | KOH | 144 | 76 | [ |
3 | N-C@CoP/Ni2P | 外延生长法 | 气固法 | H2SO4 | 153 | 53 | [ |
4 | N-C@CoP/Ni2P | 外延生长法 | 气固法 | KOH | 176 | 86 | [ |
5 | NC@Ni X Co2-X P/NF | 水热法 | 气固法 | H2SO4 | 24 | 44 | [ |
6 | NC@Ni X Co2-X P/NF | 水热法 | 气固法 | KOH | 93 | 71 | [ |
7 | Mo-NiCoP@NiCoP/Ni X Co Y H2PO2 | 水热法 | 气固法 | KOH | 134 | 89 | [ |
8 | CoNiP-1∶1 | 水热法 | 气固法 | KOH | 252 | 142 | [ |
9 | Ni5P4-500 | 冷冻干燥法 | 气固法 | KOH | 147 | 56 | [ |
10 | (Fe,Ni)3P/NiCoP | 水热法 | 气固法 | KOH | 52 | 80 | [ |
11 | (Fe,Ni)3P/NiCoP | 水热法 | 气固法 | H2SO4 | 51 | 85 | [ |
12 | (Fe,Ni)3P/NiCoP | 水热法 | 气固法 | PBS | 70 | 113 | [ |
13 | NiCoP | 水热法 | 气固法 | KOH | 90 | 103 | [ |
14 | O-NiMoP2/Ni | 水热法 | 气固法 | KOH | 36 | 62 | [ |
15 | O-NiMoP2/Ni | 水热法 | 气固法 | H2SO4 | 30 | 51 | [ |
16 | Ni2P@mesoG | 共沉淀法 | 气固法 | H2SO4 | 98 | 56 | [ |
17 | Ni2P@mesoG | 共沉淀法 | 气固法 | KOH | 188 | 99 | [ |
18 | Ni2P/rGO | 液相沉积 | 气固法 | KOH | 142 | 58 | [ |
19 | Ni2P@C-NPs/GA-5 | 溶胶-凝胶法 | 气固法 | KOH | 340 | 97 | [ |
20 | Pt/Co2P/Ni2P/NF | 水热法 | 气固法 | KOH | 75 | 64 | [ |
21 | HTNi-P/CC | 电沉积 | 气固法 | H2SO4 | 176 | 68 | [ |
22 | NiCoP@NF | 水热法 | 气固法 | KOH | 166 | 130 | [ |
23 | (Co, Ni)2P@0.2TiO2 | 共沉淀法 | 气固法 | KOH | 158 | 89 | [ |
24 | Ni-FeP/TiN/CC-1 | 水热法 | 气固法 | KOH | 75 | 73 | [ |
25 | Ni-PBA | 共沉淀 | 气固法 | KOH | 110 | 73 | [ |
表1 部分传统方法制备镍基磷化物催化剂及其电解水制氢性能
Table 1 Conventional preparation methods and catalytic performance in HER over the catalysts reported by the references
编号 | 催化剂 | 前体制备方法 | 磷化方法 | 电解液 | η10/mV | Tafel斜率/(mV·dec-1) | 文献 |
---|---|---|---|---|---|---|---|
1 | HNP NiO/NiCoP | 水热法 | 气固法 | KOH | 112 | 56 | [ |
2 | MS NiCoP | 水热法 | 气固法 | KOH | 144 | 76 | [ |
3 | N-C@CoP/Ni2P | 外延生长法 | 气固法 | H2SO4 | 153 | 53 | [ |
4 | N-C@CoP/Ni2P | 外延生长法 | 气固法 | KOH | 176 | 86 | [ |
5 | NC@Ni X Co2-X P/NF | 水热法 | 气固法 | H2SO4 | 24 | 44 | [ |
6 | NC@Ni X Co2-X P/NF | 水热法 | 气固法 | KOH | 93 | 71 | [ |
7 | Mo-NiCoP@NiCoP/Ni X Co Y H2PO2 | 水热法 | 气固法 | KOH | 134 | 89 | [ |
8 | CoNiP-1∶1 | 水热法 | 气固法 | KOH | 252 | 142 | [ |
9 | Ni5P4-500 | 冷冻干燥法 | 气固法 | KOH | 147 | 56 | [ |
10 | (Fe,Ni)3P/NiCoP | 水热法 | 气固法 | KOH | 52 | 80 | [ |
11 | (Fe,Ni)3P/NiCoP | 水热法 | 气固法 | H2SO4 | 51 | 85 | [ |
12 | (Fe,Ni)3P/NiCoP | 水热法 | 气固法 | PBS | 70 | 113 | [ |
13 | NiCoP | 水热法 | 气固法 | KOH | 90 | 103 | [ |
14 | O-NiMoP2/Ni | 水热法 | 气固法 | KOH | 36 | 62 | [ |
15 | O-NiMoP2/Ni | 水热法 | 气固法 | H2SO4 | 30 | 51 | [ |
16 | Ni2P@mesoG | 共沉淀法 | 气固法 | H2SO4 | 98 | 56 | [ |
17 | Ni2P@mesoG | 共沉淀法 | 气固法 | KOH | 188 | 99 | [ |
18 | Ni2P/rGO | 液相沉积 | 气固法 | KOH | 142 | 58 | [ |
19 | Ni2P@C-NPs/GA-5 | 溶胶-凝胶法 | 气固法 | KOH | 340 | 97 | [ |
20 | Pt/Co2P/Ni2P/NF | 水热法 | 气固法 | KOH | 75 | 64 | [ |
21 | HTNi-P/CC | 电沉积 | 气固法 | H2SO4 | 176 | 68 | [ |
22 | NiCoP@NF | 水热法 | 气固法 | KOH | 166 | 130 | [ |
23 | (Co, Ni)2P@0.2TiO2 | 共沉淀法 | 气固法 | KOH | 158 | 89 | [ |
24 | Ni-FeP/TiN/CC-1 | 水热法 | 气固法 | KOH | 75 | 73 | [ |
25 | Ni-PBA | 共沉淀 | 气固法 | KOH | 110 | 73 | [ |
编号 | 催化剂 | 前体制备方法 | 磷化方法 | 电解液 | η10/mV | Tafel斜率/(mV·dec-1) | 文献 |
---|---|---|---|---|---|---|---|
1 | NiCoP/CNT/NF | 电沉积 | 电沉积 | H2SO4 | 76 | 52 | [ |
2 | NiCoP/CNT/NF | 电沉积 | 电沉积 | KOH | 80 | 62 | [ |
3 | Ni12P5/CNT | 水热法 | 水热法 | H2SO4 | 129 | 56 | [ |
4 | Co-Ni-P | 水热法 | 溶剂热法 | KOH | 119 | 51 | [ |
5 | Ni x P-MWCNTs | 水热法 | 热解法 | H2SO4 | 96 | 58 | [ |
6 | NiFeP@C | 溶胶-凝胶法 | 煅烧法 | KOH | 160 | 76 | [ |
7 | Ni1.87Mo0.13P | 一锅法 | 一锅法 | KOH | 101 | 50 | [ |
8 | Ni1.87Mo0.13P | 二锅法 | 二锅法 | KOH | 96 | 51 | [ |
9 | Ni x P y NPs | 一步法 | 一步法 | H2SO4 | 120 | 79 | [ |
表2 部分新型镍基磷化物催化剂及其电解水制氢性能
Table 2 Novel preparation methods and catalytic performance in HER over the catalysts reported by the references
编号 | 催化剂 | 前体制备方法 | 磷化方法 | 电解液 | η10/mV | Tafel斜率/(mV·dec-1) | 文献 |
---|---|---|---|---|---|---|---|
1 | NiCoP/CNT/NF | 电沉积 | 电沉积 | H2SO4 | 76 | 52 | [ |
2 | NiCoP/CNT/NF | 电沉积 | 电沉积 | KOH | 80 | 62 | [ |
3 | Ni12P5/CNT | 水热法 | 水热法 | H2SO4 | 129 | 56 | [ |
4 | Co-Ni-P | 水热法 | 溶剂热法 | KOH | 119 | 51 | [ |
5 | Ni x P-MWCNTs | 水热法 | 热解法 | H2SO4 | 96 | 58 | [ |
6 | NiFeP@C | 溶胶-凝胶法 | 煅烧法 | KOH | 160 | 76 | [ |
7 | Ni1.87Mo0.13P | 一锅法 | 一锅法 | KOH | 101 | 50 | [ |
8 | Ni1.87Mo0.13P | 二锅法 | 二锅法 | KOH | 96 | 51 | [ |
9 | Ni x P y NPs | 一步法 | 一步法 | H2SO4 | 120 | 79 | [ |
图4 Ni2P/rGO的合成过程说明(a);SEM图像(b)和在0.5 mol·L-1 H2SO4的HER极化曲线(c)[60]
Fig.4 Description of the synthesis process of Ni2P/rGO (a); SEM image (b) and HER polarization curve at 0.5 mol·L-1 H2SO4 (c) [60]
图5 NiO、Ni(OH)2、Ni-P多孔纳米板的合成路线(a);单个Ni-P纳米板的TEM图像(b),Ni元素映射(c)和P元素映射(d) [67]
Fig.5 Synthesis roadmap of NiO, Ni(OH)2 and Ni-P porous nanoplates (a); TEM image (b), Ni element mapping (c) and P element mapping (d) of single Ni-P nanoplate [67]
图6 Ni5P4 -Ni2P-NS阵列、泡沫Ni、Pt薄片和商用Pt/C(20%)催化剂的极化(LSV)曲线[74]
Fig.6 Polarization (LSV) curves of Ni5P4-Ni2P-NS arrays, Ni foam, Pt sheets, and commercial Pt/C(20%) catalysts[74]
图7 制备的Ni12P5和Ni2P经HER CA的X射线吸收光谱(a)和极化(LSV)曲线(b) [44]
Fig.7 X-ray absorption spectra (a) and sum polarization (LSV) curve (b) of prepared Ni12P5 and Ni2P by HER CA[44]
图8 NiCoP/CF-350的TEM图像(a)、(b);NiCoP/CF-350、320、380等催化剂的极化曲线(c)[95]
Fig.8 TEM images of NiCoP/CF-350 (a),(b); Polarization curves of NiCoP/CF-350, 320, 380 catalysts (c)[95]
图9 Ni2P NSs的TEM图像(a);Ni2P NRs-L的TEM图像(b);Ni2P NSs、Ni2P NRs-L的极化曲线(c) [96]
Fig.9 TEM image of Ni2P NSs (a); TEM image of Ni2P NRs-L (b); Polarization curves of Ni2P NSs and Ni2P NRs-L (c) [96]
图10 Ni3P PHNs合成过程中结构和形态演化的示意图(a);Ni3P PHNs在酸性溶液中的极化曲线(b)
Fig.10 Schematic diagram of structure and morphology evolution during the synthesis of Ni3P PHNs (a); Polarization curve of Ni3P PHNs in acidic solution (b)
1 | 韩红梅, 杨铮, 王敏, 等. 我国氢气生产和利用现状及展望[J]. 中国煤炭, 2021, 47(5): 59-63. |
Han H M, Yang Z, Wang M, et al. The current situation and prospect of hydrogen production and utilization in China[J]. China Coal, 2021, 47(5): 59-63. | |
2 | 杨铮, 田桂丽. 我国氢气市场分析及发展前景研判[J]. 化学工业, 2022, 40(4): 51-57. |
Yang Z, Tian G L. Market analysis and development outlook of hydrogen in China[J]. Chemical Industry, 2022, 40(4): 51-57. | |
3 | 夏天, 栗振华, 邵明飞, 等. 电解水制氢耦合有机物氧化研究进展[J]. 石油炼制与化工, 2024, 55(1): 42-51. |
Xia T, Li Z H, Shao M F, et al. Research progress in electrocatalytic organic oxidation coupled with hydrogen production[J]. Petroleum Processing and Petrochemicals, 2024, 55(1): 42-51. | |
4 | 周越, 冯英杰, 付晓玥, 等. 碳基非贵金属电解水制氢催化剂合成策略的研究进展[J]. 石油化工, 2023, 52(10): 1445-1451. |
Zhou Y, Feng Y J, Fu X Y, et al. Research progress in synthesis strategy of carbon-based non-noble metal catalysts for hydrogen evolution by water electrolysis[J]. Petrochemical Technology, 2023, 52(10): 1445-1451. | |
5 | 陈香平, 苏丽荣, 吴燕霞, 等. 过渡金属磷化物用于电解水析氢反应的研究进展[J]. 功能材料, 2021, 52(6): 6059-6068. |
Chen X P, Su L R, Wu Y X, et al. Research progress of transition metal phosphides for electrocatalytic hydrogen evolution reaction[J]. Journal of Functional Materials, 2021, 52(6): 6059-6068. | |
6 | Wang Z D, Xia T, Li Z H, et al. A review of carbon-based catalysts and catalyst supports for simultaneous organic electro-oxidation and hydrogen evolution reactions[J]. New Carbon Materials, 2024, 39(1): 67-77. |
7 | 骆永伟, 朱亮, 王向飞, 等. 电解水制氢催化剂的研究与发展[J]. 金属功能材料, 2021, 28(3): 58-66. |
Luo Y W, Zhu L, Wang X F, et al. Research and development of electrolytic water hydrogen production catalyst[J]. Metallic Functional Materials, 2021, 28(3): 58-66. | |
8 | 孟翔宇, 陈铭韵, 顾阿伦, 等. “双碳”目标下中国氢能发展战略[J]. 天然气工业, 2022, 42(4): 156-179. |
Meng X Y, Chen M Y, Gu A L, et al. China's hydrogen development strategy in the context of double carbon targets[J]. Natural Gas Industry, 2022, 42(4): 156-179. | |
9 | 杜忠明, 郑津洋, 戴剑锋, 等. 我国绿氢供应体系建设思考与建议[J]. 中国工程科学, 2022, 24(6): 64-71. |
Du Z M, Zheng J Y, Dai J F, et al. Construction of green-hydrogen supply system in China: reflections and suggestions[J]. Strategic Study of CAE, 2022, 24(6): 64-71. | |
10 | Yoon S J, Lee S J, Kim M H, et al. Recent tendency on transition-metal phosphide electrocatalysts for the hydrogen evolution reaction in alkaline media[J]. Nanomaterials, 2023, 13(18): 2613. |
11 | Zhou D J, Li P S, Xu W W, et al. Recent advances in non-precious metal-based electrodes for alkaline water electrolysis[J]. ChemNanoMat, 2020, 6(3): 336-355. |
12 | Li S, Yang N, Liao L, et al. Doping β-CoMoO4 nanoplates with phosphorus for efficient hydrogen evolution reaction in alkaline media[J]. ACS Applied Materials & Interfaces, 2018, 10(43): 37038-37045. |
13 | Hu X R, Gao Y, Luo X Y, et al. Insight into the intrinsic activity of various transition metal sulfides for efficient hydrogen evolution reaction[J]. Nanoscale, 2024, 16(9): 4909-4918. |
14 | 王蕴青, 杨国锐, 延卫. 过渡金属磷化物的改性方法及其在电化学析氢中的应用[J]. 化工进展, 2023, 42(7): 3532-3549. |
Wang Y Q, Yang G R, Yan W. Transition metal phosphide modification and its applications in electrochemical hydrogen evolution reaction[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3532-3549. | |
15 | Chen J Y, Tang Y F. Research progress of transition metal-based electrocatalytic materials[J]. Advances in Analytical Chemistry, 2023, 13(4): 482-499. |
16 | 董美君, 张超, 郝敏彤, 等. 过渡金属磷化物的制备及电催化性能研究进展[J]. 现代化工, 2023, 43(12): 69-73, 82. |
Dong M J, Zhang C, Hao M T, et al. Progress in preparation and electrocatalysis properties of transition metal phosphates[J]. Modern Chemical Industry, 2023, 43(12):69-73, 82. | |
17 | Weng C C, Ren J T, Yuan Z Y. Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: a critical review[J]. ChemSusChem, 2020, 13(13): 3357-3375. |
18 | Huang C J, Xu H M, Shuai T Y, et al. A review of modulation strategies for improving catalytic performance of transition metal phosphides for oxygen evolution reaction[J]. Applied Catalysis B: Environmental, 2023, 325: 122313. |
19 | Pu Z H, Liu T T, Amiinu I S, et al. Transition-metal phosphides: activity origin, energy-related electrocatalysis applications, and synthetic strategies[J]. Advanced Functional Materials, 2020, 30(45): 2004009. |
20 | Shi Y M, Li M Y, Yu Y F, et al. Recent advances in nanostructured transition metal phosphides: synthesis and energy-related applications[J]. Energy & Environmental Science, 2020, 13(12): 4564-4582. |
21 | Xu S R, Wu Q, Lu B A, et al. Recent advances and future prospects on industrial catalysts for green hydrogen production in alkaline media[J]. Acta Physico Chimica Sinica, 2023, 39(2): 2209001. |
22 | El-Refaei S M, Russo P A, Pinna N. Recent advances in multimetal and doped transition-metal phosphides for the hydrogen evolution reaction at different pH values[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22077-22097. |
23 | Li S S, Li E Z, An X W, et al. Transition metal-based catalysts for electrochemical water splitting at high current density: current status and perspectives[J]. Nanoscale, 2021, 13(30): 12781-12817. |
24 | Cui Z B, Jiao W S, Huang Z Y, et al. Design and synthesis of noble metal-based alloy electrocatalysts and their application in hydrogen evolution reaction[J]. Small, 2023, 19(35): 2301465. |
25 | Hinnemann B, Moses P G, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. Journal of the American Chemical Society, 2005, 127(15): 5308-5309. |
26 | Zhang Z X, Wang Y X, Leng X X, et al. Controllable edge exposure of MoS2 for efficient hydrogen evolution with high current density[J]. ACS Applied Energy Materials, 2018, 1(3): 1268-1275. |
27 | Wu J, Zhang Q, Shen K, et al. Modulating interband energy separation of boron-doped Fe7S8/FeS2 electrocatalysts to boost alkaline hydrogen evolution reaction[J]. Advanced Functional Materials, 2022, 32(7): 2107802. |
28 | Park G D, Kim J H, Park S K, et al. MoSe2 embedded CNT-reduced graphene oxide composite microsphere with superior sodium ion storage and electrocatalytic hydrogen evolution performances[J]. ACS Applied Materials & Interfaces, 2017, 9(12): 10673-10683. |
29 | Ji L L, Wang J Y, Teng X, et al. CoP nanoframes as bifunctional electrocatalysts for efficient overall water splitting[J]. ACS Catalysis, 2020, 10(1): 412-419. |
30 | Li G W, Sun Y, Rao J C, et al. Carbon-tailored semimetal MoP as an efficient hydrogen evolution electrocatalyst in both alkaline and acid media[J]. Advanced Energy Materials, 2018, 8(24): 1801258. |
31 | Liu P, Rodriguez J A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P (001) surface: the importance of ensemble effect[J]. Journal of the American Chemical Society, 2005, 127(42): 14871-14878. |
32 | Popczun E J, McKone J R, Read C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(25): 9267-9270. |
33 | Kim M, Kang H, Hwang E, et al. Facile colloidal synthesis of transition metal (Co, Fe, and Ni)-added Ir-W NPs for HER in acidic electrolyte[J]. Applied Surface Science, 2023, 612: 155862. |
34 | Chen Z, Higgins D, Tao H S, et al. Highly active nitrogen-doped carbon nanotubes for oxygen reduction reaction in fuel cell applications[J]. The Journal of Physical Chemistry C, 2009, 113(49): 21008-21013. |
35 | Zheng Y, Jiao Y, Zhu Y H, et al. Hydrogen evolution by a metal-free electrocatalyst[J]. Nature Communications, 2014, 5: 3783. |
36 | Liu P, Rodriguez J A. Catalytic properties of molybdenum carbide, nitride and phosphide: a theoretical study[J]. Catalysis Letters, 2003, 91(3): 247-252. |
37 | Duan J J, Chen S, Ortíz-Ledón C A, et al. Phosphorus vacancies that boost electrocatalytic hydrogen evolution by two orders of magnitude[J]. Angewandte Chemie International Edition, 2020, 59(21): 8181-8186. |
38 | Liu Q, Tian J Q, Cui W, et al. Carbon nanotubes decorated with CoP nanocrystals: a highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution[J]. Angewandte Chemie International Edition, 2014, 53(26): 6710-6714. |
39 | Pan Y, Liu Y R, Zhao J C, et al. Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution[J]. Journal of Materials Chemistry A, 2015, 3(4): 1656-1665. |
40 | Ghosh S, Basu R N. Multifunctional nanostructured electrocatalysts for energy conversion and storage: current status and perspectives[J]. Nanoscale, 2018, 10(24): 11241-11280. |
41 | Carenco S, Portehault D, Boissière C, et al. Nanoscaled metal borides and phosphides: recent developments and perspectives[J]. Chemical Reviews, 2013, 113(10): 7981-8065. |
42 | Moon J S, Jang J H, Kim E G, et al. The nature of active sites of Ni2P electrocatalyst for hydrogen evolution reaction[J]. Journal of Catalysis, 2015, 326: 92-99. |
43 | Cao S, Wang C J, Fu W F, et al. Metal phosphides as Co-catalysts for photocatalytic and photoelectrocatalytic water splitting[J]. ChemSusChem, 2017, 10(22): 4306-4323. |
44 | Menezes P W, Indra A, Das C, et al. Uncovering the nature of active species of nickel phosphide catalysts in high-performance electrochemical overall water splitting[J]. ACS Catalysis, 2017, 7(1): 103-109. |
45 | Ge Z H, Fu B, Zhao J P, et al. A review of the electrocatalysts on hydrogen evolution reaction with an emphasis on Fe, Co and Ni-based phosphides[J]. Journal of Materials Science, 2020, 55(29): 14081-14104. |
46 | Kim B K, Kim M J, Kim J J. Modulating the active sites of nickel phosphorous by pulse-reverse electrodeposition for improving electrochemical water splitting[J]. Applied Catalysis B: Environmental, 2022, 308: 121226. |
47 | Li Y, Li R P, Wang D, et al. A review: target-oriented transition metal phosphide design and synthesis for water splitting[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5131-5149. |
48 | Wang H L, Xie Y, Cao H S, et al. Flower-like nickel phosphide microballs assembled by nanoplates with exposed high-energy (0 0 1) facets: efficient electrocatalyst for the hydrogen evolution reaction[J]. ChemSusChem, 2017, 10(24): 4899-4908. |
49 | Zhou R Q, Zhang J F, Chen Z L, et al. Phase and composition controllable synthesis of nickel phosphide-based nanoparticles via a low-temperature process for efficient electrocatalytic hydrogen evolution[J]. Electrochimica Acta, 2017, 258: 866-875. |
50 | Guo M M, Qu Y H, Zeng F Y, et al. Synthetic strategy and evaluation of hierarchical nanoporous NiO/NiCoP microspheres as efficient electrocatalysts for hydrogen evolution reaction[J]. Electrochimica Acta, 2018, 292: 88-97. |
51 | Feng T, Wang F, Xu Y J, et al. CoP/Ni2P heteronanoparticles integrated with atomic Co/Ni dual sites for enhanced electrocatalytic performance toward hydrogen evolution[J]. International Journal of Hydrogen Energy, 2021, 46(12): 8431-8443. |
52 | Mei Y, Li H W, Cong Y K, et al. Self-supported N-doped carbon@NiXCo2- X P core-shell nanorod arrays on 3D Ni foam for boosted hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2021, 46(73): 36046-36055. |
53 | Zhang C Y, Du X Q, Zhang X S. Controlled synthesis of three-dimensional branched Mo-NiCoP@NiCoP/Ni X Co Y H2PO2 core/shell nanorod heterostructures for high-performance water and urea electrolysis[J]. International Journal of Hydrogen Energy, 2022, 47(20): 10825-10836. |
54 | Amorim I, Xu J Y, Zhang N, et al. Bi-metallic cobalt-nickel phosphide nanowires for electrocatalysis of the oxygen and hydrogen evolution reactions[J]. Catalysis Today, 2020, 358: 196-202. |
55 | Lai S J, Lv C X, Chen S, et al. Ultrathin nickel phosphide nanosheet aerogel electrocatalysts derived from Ni-alginate for hydrogen evolution reaction[J]. Journal of Alloys and Compounds, 2020, 817: 152727. |
56 | Li W P, Cheng G, Peng S M, et al. Tuning hydrogen binding energy by interfacial charge transfer enables pH-universal hydrogen evolution catalysis of metal phosphides[J]. Chemical Engineering Journal, 2022, 430: 132699. |
57 | Zhou J Q, Huang C Q, Zhou Q C, et al. Electronic structure regulation of nickel phosphide for efficient overall water splitting[J]. Inorganic Chemistry, 2022, 61(24): 9318-9327. |
58 | Zhang L, Wang X Y, Zheng X Q, et al. Oxygen-incorporated NiMoP2 nanowire arrays for enhanced hydrogen evolution activity in alkaline solution[J]. ACS Applied Energy Materials, 2018, 1(10): 5482-5489. |
59 | Jeoung S, Seo B, Hwang J M, et al. Direct conversion of coordination compounds into Ni2P nanoparticles entrapped in 3D mesoporous graphene for an efficient hydrogen evolution reaction[J]. Materials Chemistry Frontiers, 2017, 1(5): 973-978. |
60 | Yan L T, Jiang H M, Xing Y L, et al. Nickel metal-organic framework implanted on graphene and incubated to be ultrasmall nickel phosphide nanocrystals acts as a highly efficient water splitting electrocatalyst[J]. Journal of Materials Chemistry A, 2018, 6(4): 1682-1691. |
61 | Zhao W T, Lu X Q, Selvaraj M, et al. M X P(M = Co/Ni)@carbon core-shell nanoparticles embedded in 3D cross-linked graphene aerogel derived from seaweed biomass for hydrogen evolution reaction[J]. Nanoscale, 2018, 10(20): 9698-9706. |
62 | Xiao X, Sun D P, Liu X H, et al. Ultra-low amount Pt-doped Co2P/Ni2P on nickel foam as an efficient electrocatalyst for the hydrogen evolution reaction in an alkaline electrolyte[J]. Sustainable Energy & Fuels, 2021, 5(4): 1059-1066. |
63 | Huo S Y, Yang S Q, Niu Q Q, et al. Synthesis of functional Ni2P/CC catalyst and the robust performances in hydrogen evolution reaction and nitrate reduction[J]. International Journal of Hydrogen Energy, 2020, 45(7): 4015-4025. |
64 | Kong T, Sui Y W, Qi J Q, et al. In situ transformation of sea urchin-like Ni x Co y P@NF as an efficient bifunctional electrocatalyst for overall water splitting[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(2): 1951-1961. |
65 | Liu X F, Hu Q, Zhu B, et al. Boosting electrochemical hydrogen evolution of porous metal phosphides nanosheets by coating defective TiO2 overlayers[J]. Small, 2018, 14(42): e1802755. |
66 | Peng X, Qasim A M, Jin W H, et al. Ni-doped amorphous iron phosphide nanoparticles on TiN nanowire arrays: an advanced alkaline hydrogen evolution electrocatalyst[J]. Nano Energy, 2018, 53: 66-73. |
67 | Yu X Y, Feng Y, Guan B Y, et al. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction[J]. Energy & Environmental Science, 2016, 9(4): 1246-1250. |
68 | Wu J, Ge X B, Li Z H, et al. Highly dispersed NiCoP nanoparticles on carbon nanotubes modified nickel foam for efficient electrocatalytic hydrogen production[J]. Electrochimica Acta, 2017, 252: 101-108. |
69 | Wang C D, Ding T, Sun Y, et al. Ni12P5 nanoparticles decorated on carbon nanotubes with enhanced electrocatalytic and lithium storage properties[J]. Nanoscale, 2015, 7(45): 19241-19249. |
70 | Pei W L, Wang X Y, Liu C H, et al. Synthesis of hyperbranched Co-Ni-P nanocrystals and their splitting degree dependent HER performances[J]. Electrochimica Acta, 2021, 381: 138286. |
71 | Lan W, Li D, Wang W X, et al. Multi-walled carbon nanotubes reinforced nickel phosphide composite: as an efficient electrocatalyst for hydrogen evolution reaction by one-step powder sintering[J]. International Journal of Hydrogen Energy, 2020, 45(1): 412-423. |
72 | Kang Q L, Li M Y, Shi J W, et al. A universal strategy for carbon-supported transition metal phosphides as high-performance bifunctional electrocatalysts towards efficient overall water splitting[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19447-19456. |
73 | Eladgham E H, Rodene D D, Sarkar R, et al. Electrocatalytic activity of bimetallic Ni-Mo-P nanocrystals for hydrogen evolution reaction[J]. ACS Applied Nano Materials, 2020, 3(8): 8199-8207. |
74 | Wang X G, Kolen'ko Y V, Bao X Q, et al. One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation[J]. Angewandte Chemie International Edition, 2015, 54(28): 8188-8192. |
75 | Wang H F, Chen L Y, Pang H, et al. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions[J]. Chemical Society Reviews, 2020, 49(5): 1414-1448. |
76 | Kumaravel S, Karthick K, Sam Sankar S, et al. Recent progresses in engineering of Ni and Co based phosphides for effective electrocatalytic water splitting[J]. ChemElectroChem, 2021, 8(24): 4638-4685. |
77 | Wang Z, Yuan S, Zang T, et al. Preparation of a Pt-Ni2P/NF catalyst for highly efficient hydrogen evolution using a magnetic field to promote Ni-Pt galvanic replacement[J]. Journal of Materials Science & Technology, 2023, 142: 144-151. |
78 | Xiao M S, Cheng R, Hao M F, et al. Onsite substitution synthesis of ultrathin Ni nanofilms loading ultrafine Pt nanoparticles for hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2015, 7(47): 26101-26107. |
79 | Li C J, Xu Y, Yang D D, et al. Boosting electrocatalytic activities of Pt-based mesoporous nanoparticles for overall water splitting by a facile Ni, P co-incorporation strategy[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9709-9716. |
80 | Hu E L, Feng Y F, Nai J W, et al. Construction of hierarchical Ni-Co-P hollow nanobricks with oriented nanosheets for efficient overall water splitting[J]. Energy & Environmental Science, 2018, 11(4): 872-880. |
81 | Yu L P, Zhang J, Dang Y L, et al. In situ growth of Ni2P-Cu3P bimetallic phosphide with bicontinuous structure on self-supported NiCuC substrate as an efficient hydrogen evolution reaction electrocatalyst[J]. ACS Catalysis, 2019, 9(8): 6919-6928. |
82 | Sun H, Min Y X, Yang W J, et al. Morphological and electronic tuning of Ni2P through iron doping toward highly efficient water splitting[J]. ACS Catalysis, 2019, 9(10): 8882-8892. |
83 | Lu X F, Zhang S L, Sim W L, et al. Phosphorized CoNi2S4 yolk-shell spheres for highly efficient hydrogen production via water and urea electrolysis[J]. Angewandte Chemie International Edition, 2021, 60(42): 22885-22891. |
84 | Cao E P, Chen Z M, Wu H, et al. Boron-induced electronic-structure reformation of CoP nanoparticles drives enhanced pH-universal hydrogen evolution[J]. Angewandte Chemie International Edition, 2020, 59(10): 4154-4160. |
85 | Pan C, Yang G Y, Yang H T, et al. Facile fabrication of steam-exploded poplar loaded with non-metal-doped Ni-Fe nanoparticles: catalytic activities in 4-nitrophenol reduction and electrocatalytic reaction[J]. Arabian Journal of Chemistry, 2022, 15(7): 103944. |
86 | Chang J F, Li K, Wu Z J, et al. Sulfur-doped nickel phosphide nanoplates arrays: a monolithic electrocatalyst for efficient hydrogen evolution reactions[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26303-26311. |
87 | Zhou G Y, Ma Y R, Wu X M, et al. Electronic modulation by N incorporation boosts the electrocatalytic performance of urchin-like Ni5P4 hollow microspheres for hydrogen evolution[J]. Chemical Engineering Journal, 2020, 402: 126302. |
88 | Yuan W Z, Jiang T F, Fang X Q, et al. Interface engineering of S-doped Co2P@Ni2P core-shell heterostructures for efficient and energy-saving water splitting[J]. Chemical Engineering Journal, 2022, 439: 135743. |
89 | Shi G J, Shen J Y. New synthesis method for nickel phosphide nanoparticles: solid phase reaction of nickel cations with hypophosphites[J]. Journal of Materials Chemistry, 2009, 19(16): 2295-2297. |
90 | Feng L G, Vrubel H, Bensimon M, et al. Easily-prepared dinickel phosphide (Ni2P) nanoparticles as an efficient and robust electrocatalyst for hydrogen evolution[J]. Physical Chemistry Chemical Physics, 2014, 16(13): 5917-5921. |
91 | Wang J W, Johnston-Peck A C, Tracy J B. Nickel phosphide nanoparticles with hollow, solid, and amorphous structures[J]. Chemistry of Materials, 2009, 21(19): 4462-4467. |
92 | Kucernak A R J, Naranammalpuram Sundaram V N. Nickel phosphide: the effect of phosphorus content on hydrogen evolution activity and corrosion resistance in acidic medium[J]. Journal of Materials Chemistry A, 2014, 2(41): 17435-17445. |
93 | Du H T, Kong R M, Guo X X, et al. Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution[J]. Nanoscale, 2018, 10(46): 21617-21624. |
94 | Shi Y M, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction[J]. Chemical Society Reviews, 2016, 45(6): 1529-1541. |
95 | Pei Y T, Huang L, Han L, et al. NiCoP/NiOOH nanoflowers loaded on ultrahigh porosity Co foam for hydrogen evolution reaction under large current density[J]. Green Energy & Environment, 2022, 7(3): 467-476. |
96 | Seo B, Baek D S, Sa Y J, et al. Shape effects of nickel phosphide nanocrystals on hydrogen evolution reaction[J]. CrystEngComm, 2016, 18(32): 6083-6089. |
97 | Jin L H, Xia H, Huang Z P, et al. Phase separation synthesis of trinickel monophosphide porous hollow nanospheres for efficient hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4(28): 10925-10932. |
[1] | 王军锋, 张俊杰, 张伟, 王家乐, 双舒炎, 张亚栋. 液相放电等离子体分解甲醇制氢:电极配置的优化[J]. 化工学报, 2024, 75(9): 3277-3286. |
[2] | 胡德政, 王榕, 王世栋, 杨文菲, 张宏伟, 袁珮. 兼具加氢和脱硫活性的富含Ni δ+非晶态NiP@γ-Al2O3催化剂的构筑及其用于石油树脂加氢的性能研究[J]. 化工学报, 2024, 75(9): 3152-3162. |
[3] | 罗欣怡, 徐强, 佘永璐, 聂腾飞, 郭烈锦. 光电分解水制氢气泡动力学特性及其传质机理研究[J]. 化工学报, 2024, 75(9): 3083-3093. |
[4] | 曹佳蕾, 孙立岩, 曾德望, 尹凡, 高子翔, 肖睿. 双流化床化学链制氢反应器的数值模拟[J]. 化工学报, 2024, 75(8): 2865-2874. |
[5] | 丁家琦, 刘海涛, 赵普, 朱香凝, 王晓放, 谢蓉. 煤炭超临界水制氢反应器内多相流场智能滚动预测研究[J]. 化工学报, 2024, 75(8): 2886-2896. |
[6] | 刘旭升, 李泽洋, 杨宇森, 卫敏. 电催化二氧化碳还原制备气态产物的研究进展[J]. 化工学报, 2024, 75(7): 2385-2408. |
[7] | 赵亭亭, 鄢立祥, 唐福利, 肖敏之, 谭烨, 宋刘斌, 肖忠良, 李灵均. 光辅助锂-二氧化碳电池催化剂的设计策略与反应机理研究进展[J]. 化工学报, 2024, 75(5): 1750-1764. |
[8] | 程骁恺, 历伟, 王靖岱, 阳永荣. 镍催化可控/活性自由基聚合反应研究进展[J]. 化工学报, 2024, 75(4): 1105-1117. |
[9] | 王沛, 段睿明, 张广儒, 金万勤. 光热驱动的膜分离生物甲烷制氢过程建模与仿真分析[J]. 化工学报, 2024, 75(3): 967-973. |
[10] | 刘志鹏, 赵长颖, 吴睿, 张智昊. 基于水电解制氢的梯度多孔传输层中气液流动可视化实验研究[J]. 化工学报, 2024, 75(2): 520-530. |
[11] | 孙冰颜, 王海清, 张玉涛, 汪肆杰. 非恒定故障率安全联锁系统执行机构的时变竞争失效研究[J]. 化工学报, 2024, 75(12): 4646-4653. |
[12] | 马浩天, 荆体瑞, 刘程程, 玉散·吐拉甫, 张喆, 王一迪, 王庆宏, 陈春茂, 徐春明. Sr改性LaFeO3用于甲烷化学链重整的还原性能与动力学研究[J]. 化工学报, 2024, 75(12): 4532-4546. |
[13] | 庞茂斌, 徐子昂, 甄翊含, 许琴, 林董澄, 刘京, 王保国. 碱性离子膜内强化离子传递策略及研究进展[J]. 化工学报, 2024, 75(11): 3987-4004. |
[14] | 常麒, 葛蔚. 填充流化床集成水煤气变换与二氧化碳矿化的模拟分析[J]. 化工学报, 2024, 75(11): 4237-4253. |
[15] | 向千禧, 杨小康, 孙嘉琦, 谢峰, 邵志刚. 质子交换膜水电解池分布特性研究[J]. 化工学报, 2024, 75(11): 4359-4368. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 303
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 223
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||