化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4749-4760.DOI: 10.11949/0438-1157.20240638
收稿日期:
2024-06-07
修回日期:
2024-08-14
出版日期:
2024-12-25
发布日期:
2025-01-03
通讯作者:
马原
作者简介:
梁佳佳(2000—),女,博士研究生,dandan2193797564@stu.xjtu.edu.cn
基金资助:
Jiajia LIANG(), Cui LI, Yuan MA(), Yining HUANG, Lei WANG, Yanzhong LI
Received:
2024-06-07
Revised:
2024-08-14
Online:
2024-12-25
Published:
2025-01-03
Contact:
Yuan MA
摘要:
针对液氢贮箱建立了考虑仲-正氢催化转化(P-O)的变密度多层绝热/蒸气冷却屏(VDMLI/VCS)二维传热模型,详细分析VCS内氢气温度梯度对绝热系统的影响,从绝热性能和附加质量的角度对比VDMLI、VDMLI+单蒸气冷却屏(SVCS)、VDMLI+双蒸气冷却屏(DVCS)、VDMLI+SVCS+P-O和VDMLI+DVCS+P-O这5种绝热方案的综合性能。结果表明:SVCS的最佳布置区间为VDMLI厚度的42%~58%,DVCS内、外屏的最佳布置区间分别为VDMLI厚度的12%~28%和55%~72%;增加SVCS和DVCS结构,较VDMLI漏热热通量分别降低69.91%和74.50%,附加质量分别增加68.98%和137.97%;引入仲-正转化后,SVCS的最佳布置区间更靠近冷端,DVCS的最佳布置区间变化较小;仲-正转化的加入提高了绝热性能且附加质量增加极小,因此无仲-正转化的绝热方案不具有性能优势。短期、中期、长期在轨任务分别推荐采用VDMLI、VDMLI/SVCS/P-O、VDMLI/DVCS/P-O绝热方案。
中图分类号:
梁佳佳, 李翠, 马原, 黄奕宁, 王磊, 厉彦忠. 在轨环境液氢贮箱高效复合绝热方案性能研究[J]. 化工学报, 2024, 75(12): 4749-4760.
Jiajia LIANG, Cui LI, Yuan MA, Yining HUANG, Lei WANG, Yanzhong LI. Research on the performance of high-efficiency composite insulation scheme for liquid hydrogen tank in orbit environment[J]. CIESC Journal, 2024, 75(12): 4749-4760.
方案 | 结构形式 |
---|---|
一 | VDMLI |
二 | VDMLI+SVCS |
三 | VDMLI+DVCS |
四 | VDMLI+SVCS+P-O |
五 | VDMLI+DVCS+P-O |
表1 5种液氢贮箱复合绝热方案
Table 1 Five composite insulation schemes for liquid hydrogen storage tanks
方案 | 结构形式 |
---|---|
一 | VDMLI |
二 | VDMLI+SVCS |
三 | VDMLI+DVCS |
四 | VDMLI+SVCS+P-O |
五 | VDMLI+DVCS+P-O |
结构 | 参数 | 数值 |
---|---|---|
SOFI | 厚度/mm | 35 |
密度/(kg/m3) | 36.8 | |
VDMLI | 厚度/mm | 37.5 |
总层数 | 45 | |
层密度/(层/cm) | 8,12,16 | |
密度/(kg/m2) | 0.01515 | |
VCS | 冷屏面积/ m2 | 35.74 |
冷屏厚度/mm | 0.50 | |
管道数量 | 4 | |
管道长度/m | 5.12 | |
管道内径/mm | 11.70 | |
管道厚度/mm | 0.50 | |
密度/(kg/m3) | 2660 | |
P-O | 催化剂密度/(kg/m3) | 5240 |
填料空隙率 | 0.5 |
表2 绝热结构的几何参数[20-22]
Table 2 Geometric parameters of adiabatic structure[20-22]
结构 | 参数 | 数值 |
---|---|---|
SOFI | 厚度/mm | 35 |
密度/(kg/m3) | 36.8 | |
VDMLI | 厚度/mm | 37.5 |
总层数 | 45 | |
层密度/(层/cm) | 8,12,16 | |
密度/(kg/m2) | 0.01515 | |
VCS | 冷屏面积/ m2 | 35.74 |
冷屏厚度/mm | 0.50 | |
管道数量 | 4 | |
管道长度/m | 5.12 | |
管道内径/mm | 11.70 | |
管道厚度/mm | 0.50 | |
密度/(kg/m3) | 2660 | |
P-O | 催化剂密度/(kg/m3) | 5240 |
填料空隙率 | 0.5 |
1 | Plachta D W, Johnson W L, Feller J R. Zero boil-off system testing[J]. Cryogenics, 2016, 74: 88-94. |
2 | 王磊, 厉彦忠, 马原, 等. 长期在轨贮存低温推进剂过冷度获取方案研究[J]. 航空动力学报, 2015, 30(11): 2794-2802. |
Wang L, Li Y Z, Ma Y, et al. Investigation on acquisition schemes of cryogenic propellant subcooling for long-term on-orbit storage[J]. Journal of Aerospace Power, 2015, 30(11): 2794-2802. | |
3 | Hastings L, Hedayat A, Brown T M. Analytical modeling and test correlation of variable density multilayer insulation for cryogenic storage[R]. NASA Marshell Space Flight Center, 2004. |
4 | Zheng J P, Chen L B, Wang J, et al. Thermodynamic analysis and comparison of four insulation schemes for liquid hydrogen storage tank[J]. Energy Conversion and Management, 2019, 186: 526-534. |
5 | Wang B, Huang Y H, Li P, et al. Optimization of variable density multilayer insulation for cryogenic application and experimental validation[J]. Cryogenics, 2016, 80: 154-163. |
6 | Zheng J P, Chen L B, Wang J, et al. Thermodynamic modelling and optimization of self-evaporation vapor cooled shield for liquid hydrogen storage tank[J]. Energy Conversion and Management, 2019, 184: 74-82. |
7 | Jiang W B, Zuo Z Q, Huang Y H, et al. Coupling optimization of composite insulation and vapor-cooled shield for on-orbit cryogenic storage tank[J]. Cryogenics, 2018, 96: 90-98. |
8 | Scott R B. Thermal design of large storage vessels for liquid hydrogen and helium[J]. Journal of Research of the National Bureau of Standards, 1957, 58(6): 317-325. |
9 | Kim S Y, Kang B H. Thermal design analysis of a liquid hydrogen vessel[J]. International Journal of Hydrogen Energy, 2000, 25(2): 133-141. |
10 | Sun Z R, Li M J, Qu Z G, et al. A quasi-2D thermodynamic model for performance analysis and optimization of liquid hydrogen storage system with multilayer insulation and vapor-cooled shield[J]. Journal of Energy Storage, 2023, 73: 109128. |
11 | Bliesner R M, Leachman J W, Adam P M. Parahydrogen-orthohydrogen conversion for enhanced vapor-cooled shielding of liquid oxygen tanks[J]. Journal of Thermophysics and Heat Transfer, 2014, 28(4): 717-723. |
12 | Liggett M W. Space-based LH2 propellant storage system: subscale ground testing results[J]. Cryogenics, 1993, 33(4): 438-442. |
13 | Shi C Y, Zhu S L, Wan C C, et al. Performance analysis of vapor-cooled shield insulation integrated with para-ortho hydrogen conversion for liquid hydrogen tanks[J]. International Journal of Hydrogen Energy, 2023, 48(8): 3078-3090. |
14 | Meng C J, Qin X J, Jiang W B, et al. Cooling effect analysis on para-ortho hydrogen conversion coupled in vapor-cooled shield[J]. International Journal of Hydrogen Energy, 2023, 48(41): 15600-15611. |
15 | 孟垂举, 张亮, 黄永华. 蒸气冷却屏内仲-正氢转化释冷效应分析[J]. 真空与低温, 2022, 28(3): 279-284. |
Meng C J, Zhang L, Huang Y H. Analysis of cooling effect of para-ortho hydrogen conversion in vapor cooling shield[J]. Vacuum and Cryogenics, 2022, 28(3): 279-284. | |
16 | Xu Z L, Tan H B, Wu H. Performance comparison of multilayer insulation coupled with vapor cooled shield and different para-ortho hydrogen conversion types[J]. Applied Thermal Engineering, 2023, 234: 121250. |
17 | 黄奕宁, 梁佳佳, 周振君, 等. 液氢箱蒸气冷却屏/仲-正转化复合结构绝热性能预测[J]. 真空与低温, 2023, 29(5): 459-468. |
Huang Y N, Liang J J, Zhou Z J, et al. Thermal insulation performance prediction of integrated composite insulation combining VCS with para-ortho hydrogen conversion for liquid hydrogen tank[J]. Vacuum and Cryogenics, 2023, 29(5): 459-468. | |
18 | 黄奕宁, 王磊, 马原, 等. 多层材料/气冷屏传热二维模型与绝热性能[J]. 华中科技大学学报(自然科学版), 2024, 52(7): 119-125. |
Huang Y N, Wang L, Ma Y, et al. Two-dimensional heat transfer model and adiabatic performance of multi-layer material air-cooled shield [J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2024, 52(7): 119-125. | |
19 | 吴业正, 厉彦忠. 制冷与低温装置[M]. 北京: 高等教育出版社, 2009: 419-420. |
Wu Y Z, Li Y Z. Refrigeration and Cryogenic Device[M]. Beijing: Higher Education Press, 2009: 419-420. | |
20 | 徐攀, 文键, 厉彦忠, 等. 氢正仲转化耦合流动换热板翅式换热器研究[J]. 西安交通大学学报, 2021, 55(12): 16-24. |
Xu P, Wen J, Li Y Z, et al. Study on hydrogen ortho-para conversion coupled with flow and heat transfer of the plate fin heat exchanger[J]. Journal of Xi'an Jiaotong University, 2021, 55(12): 16-24. | |
21 | Jiang W B, Zuo Z Q, Sun P J, et al. Thermal analysis of coupled vapor-cooling-shield insulation for liquid hydrogen-oxygen pair storage[J]. International Journal of Hydrogen Energy, 2022, 47(12): 8000-8014. |
22 | Martin J, Hastings L. Large-scale liquid hydrogen testing of variable density multilayer insulation with a foam substrate[R]. NASA Marshell Space Flight Center, 2001. |
23 | 黄永华, 蒋文兵, 孙培杰, 等. 轻质低流阻低温蒸气冷却屏: 112197635A[P]. 2021-01-08. |
Huang Y H, Jiang W B, Sun P J, et al. Light low flow resistance low-temperature steam cooling screen: 112197635A[P]. 2021-01-08. | |
24 | 冶文莲, 王田刚, 王小军, 等. 应用于低温贮箱的变密度多层绝热传热分析[J]. 低温与超导, 2012, 40(12): 5-8. |
Ye W L, Wang T G, Wang X J, et al. Heat transfer analysis of variable density multi-layer insulation for cryogenic storage tank[J]. Cryogenics & Superconductivity, 2012, 40(12): 5-8. | |
25 | 朱浩唯, 黄永华, 许奕辉, 等. 变密度多层绝热的理论分析[J]. 低温工程, 2011(6): 42-46. |
Zhu H W, Huang Y H, Xu Y H, et al. Performance optimization and analysis of variable density multilayer insulation[J]. Cryogenics, 2011(6): 42-46. | |
26 | 李科, 文键, 忻碧平. 耦合蒸气冷却屏的真空多层绝热结构对液氢储罐自增压过程的影响机制研究[J]. 化工学报, 2023, 74(9): 3786-3796. |
Li K, Wen J, Xin B P. Study on influence mechanism of vacuum multi-layer insulation coupled with vapor-cooled shield on self-pressurization process of liquid hydrogen storage tank[J]. CIESC Journal, 2023, 74(9): 3786-3796. | |
27 | Johnson W. Thermal performance of cryogenic multilayer insulation at various layer spacings[D]. Orlando, Florida, United States: University of Central Florida, 2010. |
28 | Liu Z, Li Y Z, Xie F S, et al. Thermal performance of foam/MLI for cryogenic liquid hydrogen tank during the ascent and on orbit period[J]. Applied Thermal Engineering, 2016, 98: 430-439. |
29 | Liang J J, Ma Y, Li Y Z, et al. Feasibility study on space reorientation for liquid hydrogen tanks by means of evaporated exhaust gas[J]. Processes, 2023, 11(4): 1278. |
30 | Pedrow B P, Muniyal Krishna S K, Shoemake E D, et al. Parahydrogen-orthohydrogen conversion on catalyst-loaded scrim for vapor-cooled shielding of cryogenic storage vessels[J]. Journal of Thermophysics and Heat Transfer, 2021, 35(1): 142-151. |
31 | Nast T, Frank D, Burns K. Cryogenic propellant boil-off reduction approaches[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, Virigina: AIAA, 2011: AIAA2011-806. |
[1] | 董新宇, 边龙飞, 杨怡怡, 张宇轩, 刘璐, 王腾. 冷却条件下倾斜上升管S-CO2流动与传热特性研究[J]. 化工学报, 2024, 75(S1): 195-205. |
[2] | 石美琳, 赵连达, 邓行健, 王静松, 左海滨, 薛庆国. 催化甲烷重整工艺的研究进展[J]. 化工学报, 2024, 75(S1): 25-39. |
[3] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
[4] | 赵焕娟, 包颖昕, 于康, 刘婧, 钱新明. 多元组分爆轰不稳定性定量实验研究[J]. 化工学报, 2024, 75(S1): 339-348. |
[5] | 秦思宇, 刘艺佳, 杨佳成, 佟薇, 金立文, 孟祥兆. 受限蒸汽腔内气液两相传热特性研究[J]. 化工学报, 2024, 75(S1): 47-55. |
[6] | 胡俭, 姜静华, 范生军, 刘建浩, 邹海江, 蔡皖龙, 王沣浩. 中深层U型地埋管换热器取热特性研究[J]. 化工学报, 2024, 75(S1): 76-84. |
[7] | 任冠宇, 张义飞, 李新泽, 杜文静. 翼型印刷电路板式换热器流动传热特性数值研究[J]. 化工学报, 2024, 75(S1): 108-117. |
[8] | 李焱, 郑利军, 张恩勇, 王云飞. 深水海底管道软管内部流体渗透特性模型与试验研究[J]. 化工学报, 2024, 75(S1): 118-125. |
[9] | 李新泽, 张双星, 任冠宇, 洪瑞, 杜文静. 大功率LED热管理用脉动热管热性能[J]. 化工学报, 2024, 75(S1): 126-134. |
[10] | 刘亚超, 谭晓杰, 李旭东, 王瑞, 王慧, 韩璇, 赵青山. DES合成高活性CoCO3纳米片及析氧反应性能研究[J]. 化工学报, 2024, 75(9): 3320-3328. |
[11] | 张梦婷, 王书林, 桑熙, 元兴昊, 徐刚. 人工Cu-TM1459金属酶催化不对称迈克尔加成反应[J]. 化工学报, 2024, 75(9): 3255-3265. |
[12] | 李舒月, 王欢, 周少强, 毛志宏, 张永民, 王军武, 吴秀花. 基于CPFD方法的U3O8氢还原流化床反应器数值模拟[J]. 化工学报, 2024, 75(9): 3133-3151. |
[13] | 王树振, 王玉婷, 马梦茜, 张巍, 向江南, 鲁海莹, 王琰, 范彬彬, 郑家军, 代卫炯, 李瑞丰. 两步晶化合成ZSM-22分子筛及其临氢异构反应性能[J]. 化工学报, 2024, 75(9): 3176-3187. |
[14] | 王军锋, 张俊杰, 张伟, 王家乐, 双舒炎, 张亚栋. 液相放电等离子体分解甲醇制氢:电极配置的优化[J]. 化工学报, 2024, 75(9): 3277-3286. |
[15] | 陈超伟, 柳洋, 杜文静, 李金波, 史大阔, 辛公明. 局部热点下微肋通道流动传热特性[J]. 化工学报, 2024, 75(9): 3113-3121. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 196
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 74
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||