化工学报 ›› 2024, Vol. 75 ›› Issue (12): 4749-4760.DOI: 10.11949/0438-1157.20240638

• 能源和环境工程 • 上一篇    下一篇

在轨环境液氢贮箱高效复合绝热方案性能研究

梁佳佳(), 李翠, 马原(), 黄奕宁, 王磊, 厉彦忠   

  1. 西安交通大学制冷与低温工程系,陕西 西安 710049
  • 收稿日期:2024-06-07 修回日期:2024-08-14 出版日期:2024-12-25 发布日期:2025-01-03
  • 通讯作者: 马原
  • 作者简介:梁佳佳(2000—),女,博士研究生,dandan2193797564@stu.xjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(52176021)

Research on the performance of high-efficiency composite insulation scheme for liquid hydrogen tank in orbit environment

Jiajia LIANG(), Cui LI, Yuan MA(), Yining HUANG, Lei WANG, Yanzhong LI   

  1. Department of Refrigeration and Cryogenic Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2024-06-07 Revised:2024-08-14 Online:2024-12-25 Published:2025-01-03
  • Contact: Yuan MA

摘要:

针对液氢贮箱建立了考虑仲-正氢催化转化(P-O)的变密度多层绝热/蒸气冷却屏(VDMLI/VCS)二维传热模型,详细分析VCS内氢气温度梯度对绝热系统的影响,从绝热性能和附加质量的角度对比VDMLI、VDMLI+单蒸气冷却屏(SVCS)、VDMLI+双蒸气冷却屏(DVCS)、VDMLI+SVCS+P-O和VDMLI+DVCS+P-O这5种绝热方案的综合性能。结果表明:SVCS的最佳布置区间为VDMLI厚度的42%~58%,DVCS内、外屏的最佳布置区间分别为VDMLI厚度的12%~28%和55%~72%;增加SVCS和DVCS结构,较VDMLI漏热热通量分别降低69.91%和74.50%,附加质量分别增加68.98%和137.97%;引入仲-正转化后,SVCS的最佳布置区间更靠近冷端,DVCS的最佳布置区间变化较小;仲-正转化的加入提高了绝热性能且附加质量增加极小,因此无仲-正转化的绝热方案不具有性能优势。短期、中期、长期在轨任务分别推荐采用VDMLI、VDMLI/SVCS/P-O、VDMLI/DVCS/P-O绝热方案。

关键词: 氢, 传热, 蒸气冷却屏, 仲-正转化, 催化

Abstract:

A two-dimensional heat transfer model was established for the variable density multi-layer insulation (VDMLI) with vapor-cooled shield (VCS) and catalytic conversion of para-ortho hydrogen (P-O) of the liquid hydrogen tank. The influence of the hydrogen temperature gradient in VCS on the thermal insulation system was analyzed in detail. The comprehensive performances of VDMLI, VDMLI + single vapor-cooled shield (SVCS), VDMLI + double vapor-cooled shield (DVCS), VDMLI + SVCS + P-O, and VDMLI + DVCS + P-O were compared from the perspectives of thermal insulation performance and additional mass. The results show that the optimal layout interval of SVCS is 42%—58% of VDMLI thickness, and the optimal layout intervals of DVCS's inner and outer shield are 12%—28% and 55%—72% of VDMLI thickness, respectively. Compared with VDMLI, the application of SVCS and DVCS reduces the heat flux by 69.91% and 74.50%, and increases the additional mass by 68.98% and 137.97%, respectively. After the introduction of para-ortho hydrogen conversion, the optimal layout range of SVCS is closer to the cold end, and the optimal layout range of DVCS changes less. The addition of para-ortho hydrogen conversion improves the insulation performance and the additional mass increases very little, so the insulation scheme without para-ortho hydrogen conversion does not have performance advantages. Comparing the performance of different adiabatic schemes, the VDMLI adiabatic scheme is recommended for short-term on-orbit missions, the VDMLI/SVCS/P-O adiabatic scheme is advised for medium-term on-orbit missions, and the VDMLI/DVCS/P-O adiabatic scheme can be adopted for long-term on-orbit missions.

Key words: hydrogen, heat transfer, vapor-cooled shield, para-ortho hydrogen conversion, catalysis

中图分类号: