化工学报 ›› 2025, Vol. 76 ›› Issue (1): 161-172.DOI: 10.11949/0438-1157.20240809
收稿日期:
2024-07-17
修回日期:
2024-10-21
出版日期:
2025-01-25
发布日期:
2025-02-08
通讯作者:
陈黎
作者简介:
张闯德(1994—),男,博士研究生,chuangdezhang@stu.xjtu.edu.cn
基金资助:
Received:
2024-07-17
Revised:
2024-10-21
Online:
2025-01-25
Published:
2025-02-08
Contact:
Li CHEN
摘要:
多孔介质中多相流-溶质输运-化学反应-固相演变的多场耦合反应输运过程对于许多科学和工程问题至关重要。建立孔隙尺度多相反应输运模型,研究了优势通道对多孔介质中多相反应输运过程的影响。结果表明,相比于单相反应输运过程形成沿优势通道扩展的虫洞,两相流的存在会改变传质路径,当非反应流体增多时,会封堵优势通道,抑制横向传质,导致虫洞溶解消失,固体溶解突破延后。此外,两相流的存在会使可供反应界面长度减小,平均反应物浓度在溶解突破后显著增大。
中图分类号:
张闯德, 陈黎. 优势通道对多孔介质中多相反应输运过程影响的孔隙尺度研究[J]. 化工学报, 2025, 76(1): 161-172.
Chuangde ZHANG, Li CHEN. Pore-scale study of effects of preferential path on multiphase reactive transport process in porous media[J]. CIESC Journal, 2025, 76(1): 161-172.
参数 | 符号 | 物理单位值 | 格子单位值 |
---|---|---|---|
颗粒直径 | D | 500 μm | 50 |
流体A密度 | ρA | 1000 kg·m-3 | 2.0 |
盐水的运动黏度 | μA | 1.0×10-6 m2·s-1 | 0.167 |
反应物在盐水中的扩散系数 | DR | 7.2×10-7 m2·s-1 | 0.12 |
生成物在盐水中的扩散系数 | DP | 7.2×10-7 m2·s-1 | 0.12 |
摩尔体积 | Vm | 3.8×10-5 m3·mol-1 | 3.8×10-2 |
平衡常数 | Keq | 1×1010 | 1×1010 |
流体A中的入口反应物浓度 | CR,in | 1.0 mol·L-1 | 1.0 |
流体A和B的入口产品浓度 | CP,in | 0 mol·L-1 | 0 |
Péclet数 | Pe | 5 | 5 |
Damköhler数 | Da | 10 | 10 |
表1 模拟中采用的物性参数
Table 1 Physical property parameters used in the simulation
参数 | 符号 | 物理单位值 | 格子单位值 |
---|---|---|---|
颗粒直径 | D | 500 μm | 50 |
流体A密度 | ρA | 1000 kg·m-3 | 2.0 |
盐水的运动黏度 | μA | 1.0×10-6 m2·s-1 | 0.167 |
反应物在盐水中的扩散系数 | DR | 7.2×10-7 m2·s-1 | 0.12 |
生成物在盐水中的扩散系数 | DP | 7.2×10-7 m2·s-1 | 0.12 |
摩尔体积 | Vm | 3.8×10-5 m3·mol-1 | 3.8×10-2 |
平衡常数 | Keq | 1×1010 | 1×1010 |
流体A中的入口反应物浓度 | CR,in | 1.0 mol·L-1 | 1.0 |
流体A和B的入口产品浓度 | CP,in | 0 mol·L-1 | 0 |
Péclet数 | Pe | 5 | 5 |
Damköhler数 | Da | 10 | 10 |
图5 单相反应输运和多相反应输运浓度质心平均运移速度对比
Fig.5 Comparison of mean migration velocity of concentration mass center between single-phase and multiphase reaction transport processes
1 | Snæbjörnsdóttir S Ó, Sigfússon B, Marieni C, et al. Carbon dioxide storage through mineral carbonation[J]. Nature Reviews Earth & Environment, 2020, 1: 90-102. |
2 | Zhang R Y, Min T, Chen L, et al. Pore-scale and multiscale study of effects of Pt degradation on reactive transport processes in proton exchange membrane fuel cells[J]. Applied Energy, 2019, 253: 113590. |
3 | Jew A D, Druhan J L, Ihme M, et al. Chemical and reactive transport processes associated with hydraulic fracturing of unconventional oil/gas shales[J]. Chemical Reviews, 2022, 122(9): 9198-9263. |
4 | 薛强, 梁冰, 冯夏庭, 等. 石油污染物在地下环境系统中运移的多相流数值模型[J]. 化工学报, 2005, 56(5): 920-924. |
Xue Q, Liang B, Feng X T, et al. Numerical modeling with multiphase flow model of petroleum pollutant transport in subsurface environment[J]. Journal of Chemical Industry and Engineering (China), 2005, 56(5): 920-924. | |
5 | Yu Y S, Zhang X W, Liu J W, et al. Natural gas hydrate resources and hydrate technologies: a review and analysis of the associated energy and global warming challenges[J]. Energy & Environmental Science, 2021, 14(11): 5611-5668. |
6 | 张烈辉, 张涛, 赵玉龙, 等. 二氧化碳-水-岩作用机理及微观模拟方法研究进展[J]. 石油勘探与开发, 2024, 51(1): 199-211. |
Zhang L H, Zhang T, Zhao Y L, et al. A review of interaction mechanisms and microscopic simulation methods for CO2-water-rock system[J]. Petroleum Exploration and Development, 2024, 51(1): 199-211. | |
7 | Békri S, Thovert J, Adler P. Dissolution of porous media[J]. Chemical Engineering Science, 1995, 50: 2765-2791. |
8 | Fredd C N, Fogler H S. Influence of transport and reaction on wormhole formation in porous media[J]. AIChE Journal, 1998, 44(9): 1933-1949. |
9 | Maheshwari P, Ratnakar R R, Kalia N, et al. 3-D simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks[J]. Chemical Engineering Science, 2013, 90: 258-274. |
10 | Wang Z, Chen L, Wei H K, et al. Pore-scale study of mineral dissolution in heterogeneous structures and deep learning prediction of permeability[J]. Physics of Fluids, 2022, 34(11): 116609. |
11 | Zhang Y T, Jiang F, Tsuji T. Influence of pore space heterogeneity on mineral dissolution and permeability evolution investigated using lattice Boltzmann method[J]. Chemical Engineering Science, 2022, 247: 117048. |
12 | Liu M, Mostaghimi P. High-resolution pore-scale simulation of dissolution in porous media[J]. Chemical Engineering Science, 2017, 161: 360-369. |
13 | Chen L, Kang Q J, Viswanathan H S, et al. Pore-scale study of dissolution-induced changes in hydrologic properties of rocks with binary minerals[J]. Water Resources Research, 2014, 50(12): 9343-9365. |
14 | Deng H, Molins S, Trebotich D, et al. Pore-scale numerical investigation of the impacts of surface roughness: upscaling of reaction rates in rough fractures[J]. Geochimica et Cosmochimica Acta, 2018, 239: 374-389. |
15 | You J H, Lee K J. A pore–scale investigation of surface roughness on the evolution of natural fractures during acid dissolution using DBS method[J]. Journal of Petroleum Science and Engineering, 2021, 204: 108728. |
16 | Zhou C X, Hu R, Li H W, et al. Pore-scale visualization and quantification of dissolution in microfluidic rough channels[J]. Water Resources Research, 2022, 58(11): e2022wr032255. |
17 | Chen L, He A, Zhao J L, et al. Pore-scale modeling of complex transport phenomena in porous media[J]. Progress in Energy and Combustion Science, 2022, 88: 100968. |
18 | 陈黎. 能源与环境学科中的多尺度多物理化学耦合反应输运过程数值模拟研究[D]. 西安: 西安交通大学, 2013. |
Chen L. Numerical investigation of multiscale multiple physicochemical coupled reactive transport processes in energy and environmental discipline[D]. Xi'an: Xi'an Jiaotong University, 2013. | |
19 | Shukla S, Zhu D, Hill A D. The effect of phase saturation conditions on wormhole propagation in carbonate acidizing[J]. SPE Journal, 2006, 11(3): 273-281. |
20 | Babaei M, Sedighi M. Impact of phase saturation on wormhole formation in rock matrix acidizing[J]. Chemical Engineering Science, 2018, 177: 39-52. |
21 | Ott H, Oedai S. Wormhole formation and compact dissolution in single-and two-phase CO2-brine injections[J]. Geophysical Research Letters, 2015, 42(7): 2270-2276. |
22 | Jiménez-Martínez J, de Anna P, Tabuteau H, et al. Pore-scale mechanisms for the enhancement of mixing in unsaturated porous media and implications for chemical reactions[J]. Geophysical Research Letters, 2015, 42(13): 5316-5324. |
23 | Li P, Deng H, Molins S. The effect of pore-scale two-phase flow on mineral reaction rates[J]. Frontiers in Water, 2022, 3: 734518. |
24 | Kang Q J, Lichtner P C, Zhang D X. Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B5): B05203. |
25 | Kang Q J, Lichtner P C, Zhang D X. An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale[J]. Water Resources Research, 2007, 43(12): W12S14. |
26 | Lu G P, DePaolo D J, Kang Q J, et al. Lattice Boltzmann simulation of snow crystal growth in clouds[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D7): e2008jd011087. |
27 | Xu Q H, Long W, Jiang H, et al. Pore-scale modelling of the coupled thermal and reactive flow at the combustion front during crude oil in situ combustion[J]. Chemical Engineering Journal, 2018, 350: 776-790. |
28 | Wang M, Zhu W B. Pore-scale study of heterogeneous chemical reaction for ablation of carbon fibers using the lattice Boltzmann method[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1222-1239. |
29 | Zhang L M, Zhang C D, Zhang K, et al. Pore-scale investigation of methane hydrate dissociation using the lattice Boltzmann method[J]. Water Resources Research, 2019, 55(11): 8422-8444. |
30 | Chen L, Kang Q J, Robinson B A, et al. Pore-scale modeling of multiphase reactive transport with phase transitions and dissolution-precipitation processes in closed systems[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2013, 87(4): 043306. |
31 | Chen L, Kang Q J, Tang Q, et al. Pore-scale simulation of multicomponent multiphase reactive transport with dissolution and precipitation[J]. International Journal of Heat and Mass Transfer, 2015, 85: 935-949. |
32 | Chen L, Wang M Y, Kang Q J, et al. Pore scale study of multiphase multicomponent reactive transport during CO2 dissolution trapping[J]. Advances in Water Resources, 2018, 116: 208-218. |
33 | Yang J Y, Dai X Y, Xu Q H, et al. Lattice Boltzmann modeling of interfacial mass transfer in a multiphase system[J]. Physical Review E, 2021, 104(1/2): 015307. |
40 | Zhang R D. Spatial Variation Theory and Its Application[M]. Beijing: Science Press, 2005. |
41 | Menke H P, Bijeljic B, Andrew M G, et al. Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions[J]. Environmental Science & Technology, 2015, 49(7): 4407-4414. |
34 | Yang J Y, Xu Q H, Liu Z Y, et al. Pore-scale study of the multiphase methane hydrate dissociation dynamics and mechanisms in the sediment[J]. Chemical Engineering Journal, 2022, 430: 132786. |
35 | Diao Z H, Chen Z X, Liu H H, et al. Pore-scale modeling of gravity-driven superheated vapor flooding process in porous media using the lattice Boltzmann method[J]. International Communications in Heat and Mass Transfer, 2023, 146: 106937. |
36 | Zhang C D, Chen L, Min T, et al. Pore-scale modeling of effects of multiphase reactive transport on solid dissolution in porous media with structural heterogeneity[J]. Chemical Engineering Science, 2024, 295: 120127. |
37 | 付宇航, 赵述芳, 王文坦, 等. 多相/多组分LBM模型及其在微流体领域的应用[J]. 化工学报, 2014, 65(7): 2535-2543. |
Fu Y H, Zhao S F, Wang W T, et al. Application of lattice Boltzmann method for simulation of multiphase/multicomponent flow in microfluidics[J]. CIESC Journal, 2014, 65(7): 2535-2543. | |
38 | Anna S L, Bontoux N, Stone H A. Formation of dispersions using "flow focusing" in microchannels[J]. Applied Physics Letters, 2003, 82(3): 364-366. |
39 | 何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京: 科学出版社, 2009. |
He Y L, Wang Y, Li Q. Lattice Boltzmann Method: Theory and Applications[M]. Beijing: Science Press, 2009. | |
40 | 张仁铎. 空间变异理论及应用[M]. 北京: 科学出版社, 2005. |
[1] | 王瀚彬, 胡帅, 毕丰雷, 李隽森, 贺来宾. 新型波纹翅片金属氢化物反应器的放氢性能有限元分析[J]. 化工学报, 2025, 76(1): 221-230. |
[2] | 徐英宇, 杨国强, 彭璟, 孙海宁, 张志炳. 微界面高级氧化处理煤化工废水的研究[J]. 化工学报, 2024, 75(S1): 283-291. |
[3] | 李雨霜, 王兴成, 温伯尧, 骆政园, 白博峰. 多孔介质中乳状液驱油的两相流动过程及其影响因素[J]. 化工学报, 2024, 75(S1): 56-66. |
[4] | 杨子驰, 谢冰琪, 石瑞莘, 雷虹, 陈晨, 周才金, 张吉松. 套管膜式微反应器内高效安全的气液传质-反应过程研究进展[J]. 化工学报, 2024, 75(9): 3011-3027. |
[5] | 罗正航, 李敬宇, 陈伟雄, 种道彤, 严俊杰. 摇摆运动下低流率蒸汽冷凝换热特性和气泡受力数值模拟[J]. 化工学报, 2024, 75(8): 2800-2811. |
[6] | 曾港, 陈林, 杨董, 袁海专, 黄彦平. 矩形通道内超临界CO2局部热流场可视化实验[J]. 化工学报, 2024, 75(8): 2831-2839. |
[7] | 金虎, 杨帆, 戴梦瑶. 基于格子Boltzmann方法的液滴在圆柱壁面上运动过程研究[J]. 化工学报, 2024, 75(8): 2897-2908. |
[8] | 杨明军, 巩广军, 郑嘉男, 宋永臣. 泥质低渗水合物降压开采特性与模型研究[J]. 化工学报, 2024, 75(8): 2909-2916. |
[9] | 赵帅琪, 张瑞, 黄瀚, 赵昆鹏, 白博峰. 水气转化对超临界水煤气化的抑制特性[J]. 化工学报, 2024, 75(8): 2960-2969. |
[10] | 王成秀, 宋大山, 李之辉, 杨潇, 蓝兴英, 高金森, 徐春明. Geldart C类脱硫灰颗粒在环流耦合提升管内稳定流动特性[J]. 化工学报, 2024, 75(4): 1485-1496. |
[11] | 徐安冉, 刘凯, 王娜, 赵振宇, 李洪, 高鑫. 强吸波催化剂协同微波能强化果糖脱水制5-羟甲基糠醛[J]. 化工学报, 2024, 75(4): 1565-1577. |
[12] | 陈彦松, 阮达, 刘渊博, 郑通, 张帅帅, 马学虎. 微通道换热器拓扑结构优化与性能研究[J]. 化工学报, 2024, 75(3): 823-835. |
[13] | 常麒, 葛蔚. 填充流化床集成水煤气变换与二氧化碳矿化的模拟分析[J]. 化工学报, 2024, 75(11): 4237-4253. |
[14] | 宋璟, 王玉军, 邓建, 陈光文, 骆广生. 微反应器内芳烃硝化反应研究进展[J]. 化工学报, 2024, 75(11): 3911-3922. |
[15] | 蔡伟华, 王玉航, 张文超, 李少丹, 刘鑫龙, 蔡本安, 王金成. 多孔介质-文丘里气泡发生器产气特性[J]. 化工学报, 2024, 75(10): 3488-3497. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 289
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 254
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||