1 |
Zhang F K, Shan B M, Wang Y L, et al. Progress and opportunities for utilizing seeding techniques in crystallization processes[J]. Organic Process Research & Development, 2021, 25(7): 1496-1511.
|
2 |
Maharana A, Sehrawat P, Das A, et al. Multi-dimensional population balance modeling of sonocrystallization of pyrazinamide with systematic estimation of kinetic parameters based on uncertainty and sensitivity analyses[J]. Chemical Engineering Research and Design, 2023, 200: 356-373.
|
3 |
Barrasso D, El Hagrasy A, Litster J D, et al. Multi-dimensional population balance model development and validation for a twin screw granulation process[J]. Powder Technology, 2015, 270: 612-621.
|
4 |
Qamar S, Rehman S M U. High resolution finite volume schemes for solving multivariable biological cell population balance models[J]. Industrial & Engineering Chemistry Research, 2013, 52(11): 4323-4341.
|
5 |
Kang Y S, Ward J D, Nagy Z K. A new framework and a hybrid method for one-dimensional population balance modeling of batch thermocycling crystallization[J]. Computers & Chemical Engineering, 2022, 157: 107588.
|
6 |
武首香, 王学魁, 沙作良, 等. 工业结晶过程的多相流与粒数衡算的CFD耦合求解[J]. 化工学报, 2009, 60(3): 593-600.
|
|
Wu S X, Wang X K, Sha Z L, et al. Solution of population balance in multiphase flow field for industrial crystallization process[J]. CIESC Journal, 2009, 60(3): 593-600.
|
7 |
Omar H M, Rohani S. Crystal population balance formulation and solution methods: a review[J]. Crystal Growth & Design, 2017, 17(7): 4028-4041.
|
8 |
李倩, 程景才, 杨超, 等. 群体平衡方程在搅拌反应器模拟中的应用[J]. 化工学报, 2014, 65(5): 1607-1615.
|
|
Li Q, Cheng J C, Yang C, et al. Application of population balance equation in numerical simulation of multiphase stirred tanks[J]. CIESC Journal, 2014, 65(5): 1607-1615.
|
9 |
Patil D P, Andrews J R G. An analytical solution to continuous population balance model describing floc coalescence and breakage—a special case[J]. Chemical Engineering Science, 1998, 53(3): 599-601.
|
10 |
McCoy B J, Madras G. Analytical solution for a population balance equation with aggregation and fragmentation[J]. Chemical Engineering Science, 2003, 58(13): 3049-3051.
|
11 |
Muneer A, Schikarski T, Pflug L. Exact method of moments for multi-dimensional population balance equations[J]. ArXiv e-Prints, 2023. Ⅵ.
|
12 |
Sun F R, Liu T, Nagy Z K, et al. Extended sectional quadrature method of moments for crystal growth and nucleation with application to seeded cooling crystallization[J]. Chemical Engineering Science, 2022, 254: 117625.
|
13 |
Inguva P K, Braatz R D. Efficient numerical schemes for multidimensional population balance models[J]. Computers & Chemical Engineering, 2023, 170: 108095.
|
14 |
Inguva P K, Schickel K C, Braatz R D. Efficient numerical schemes for population balance models[J]. Computers & Chemical Engineering, 2022, 162: 107808.
|
15 |
O'Sullivan D, Rigopoulos S. A conservative finite volume method for the population balance equation with aggregation, fragmentation, nucleation and growth[J]. Chemical Engineering Science, 2022, 263: 117925.
|
16 |
侯庆志, 沈嘉渊, 魏建国. 反应流模拟的有限体积法的比较[J]. 计算机工程与应用, 2017, 53(15): 63-67.
|
|
Hou Q Z, Shen J Y, Wei J G. Comparison of finite volume methods for numerical simulation of reacting flow[J]. Computer Engineering and Applications, 2017, 53(15): 63-67.
|
17 |
Bhoi S, Sarkar D. Hybrid finite volume and Monte Carlo method for solving multi-dimensional population balance equations in crystallization processes[J]. Chemical Engineering Science, 2020, 217: 115511.
|
18 |
Ma D L, Tafti D K, Braatz R D. High-resolution simulation of multidimensional crystal growth[J]. Industrial & Engineering Chemistry Research, 2002, 41(25): 6217-6223.
|
19 |
Qamar S, Ashfaq A, Warnecke G, et al. Adaptive high-resolution schemes for multidimensional population balances in crystallization processes[J]. Computers & Chemical Engineering, 2007, 31(10): 1296-1311.
|
20 |
Szilágyi B, Nagy Z K. Graphical processing unit (GPU) acceleration for numerical solution of population balance models using high resolution finite volume algorithm[J]. Computers & Chemical Engineering, 2016, 91: 167-181.
|
21 |
侯波, 葛永斌. 求解一维对流方程的高精度紧致差分格式[J]. 应用数学, 2019, 32(3): 635-642.
|
|
Hou B, Ge Y B. A high-order compact difference scheme for solving the 1D convection equation[J]. Mathematica Applicata, 2019, 32(3): 635-642.
|
22 |
魏剑英, 葛永斌. 一种求解三维非稳态对流扩散反应方程的高精度有限差分格式[J]. 应用数学和力学, 2022, 43(2): 187-197.
|
|
Wei J Y, Ge Y B. A high-order finite difference scheme for 3D unsteady convection diffusion reaction equations[J]. Applied Mathematics and Mechanics, 2022, 43(2): 187-197.
|
23 |
Zhao F X, Ji X, Shyy W, et al. Direct modeling for computational fluid dynamics and the construction of high-order compact scheme for compressible flow simulations[J]. Journal of Computational Physics, 2023, 477: 111921.
|
24 |
Wei J Y, Ge Y B, Wang Y. High-order compact difference method for solving two- and three-dimensional unsteady convection diffusion reaction equations[J]. Axioms, 2022, 11(3): 111.
|
25 |
Niu Y X, Liu Y, Li H, et al. Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media[J]. Mathematics and Computers in Simulation, 2023, 203: 387-407.
|
26 |
LeVeque R J. Finite Volume Methods for Hyperbolic Problems[M]. Cambridge: Cambridge University Press, 2002.
|
27 |
李青, 王能超. 解循环三对角线性方程组的追赶法[J]. 小型微型计算机系统, 2002, 23(11): 1393-1395.
|
|
Li Q, Wang N C. An algorithm for solving circulant tridiagonal systems[J]. Mini-micro Systems, 2002, 23(11): 1393-1395.
|
28 |
Gunawan R, Fusman I, Braatz R D. High resolution algorithms for multidimensional population balance equations[J]. AIChE Journal, 2004, 50(11): 2738-2749.
|
29 |
Kalita J C, Dalal D C, Dass A K. A class of higher order compact schemes for the unsteady two-dimensional convection-diffusion equation with variable convection coefficients[J]. International Journal for Numerical Methods in Fluids, 2002, 38(12): 1111-1131.
|
30 |
张莉, 罗春林, 张瀚月. 一类求解非线性对流扩散方程的线性多步法[J]. 西北师范大学学报(自然科学版), 2024, 60(2): 29-36.
|
|
Zhang L, Luo C L, Zhang H Y. A second-order linear multi-step method for solving nonlinear convection-diffusion equations[J]. Journal of Northwest Normal University (Natural Science), 2024, 60(2): 29-36.
|
31 |
Yang X J, Ge Y B, Zhang L. A class of high-order compact difference schemes for solving the Burgers' equations[J]. Applied Mathematics and Computation, 2019, 358: 394-417.
|
32 |
Gunawan R, Fusman I, Braatz R D. Parallel high-resolution finite volume simulation of particulate processes[J]. AIChE Journal, 2008, 54(6): 1449-1458.
|