化工学报 ›› 2025, Vol. 76 ›› Issue (2): 812-824.DOI: 10.11949/0438-1157.20240977
• 能源和环境工程 • 上一篇
许顺年1(), 冯晓1, 史得军2, 孙志国2, 张宸玮1, 王刚1(
), 高金森1, 徐春明1
收稿日期:
2024-08-30
修回日期:
2024-10-09
出版日期:
2025-03-25
发布日期:
2025-03-10
通讯作者:
王刚
作者简介:
许顺年(1995—),男,博士研究生,shunnianxu@163.com
基金资助:
Shunnian XU1(), Xiao FENG1, Dejun SHI2, Zhiguo SUN2, Chenwei ZHANG1, Gang WANG1(
), Jinsen GAO1, Chunming XU1
Received:
2024-08-30
Revised:
2024-10-09
Online:
2025-03-25
Published:
2025-03-10
Contact:
Gang WANG
摘要:
加氢处理是劣质重油提质升级的重要工艺,但是沥青质超分子的存在严重影响了加氢改质的效果。因此,针对沥青质超分子三个主要层级结构(分子单元、纳米聚集体和团簇),提高其加氢解缔效率至关重要。本研究考察了原油直接加氢的反应性能及沥青质超分子层级结构的变化规律,旨在为提高石油中沥青质超分子解缔效率提供新的解决方案。结果表明,与重油加氢相比,原油直接加氢表现出更优异的改质性能,其中非烃化合物的脱除率超过70%,而沥青质的脱除率则超过80%。在原油加氢过程中,沥青质的表观结构尺寸从原先的2~4 μm降低到2 μm以下,且颗粒尺寸变得更加均匀。沥青质超分子的层级结构也发生了显著变化,超分子团簇的尺寸相比加氢前减少了50%以上,沥青质超分子中90%的非晶纳米聚集体被转化,而难以转化的似晶纳米聚集体的转化率也超过了70%。原油加氢处理降低了分子单元之间的空间屏蔽效应,使其形成了更紧密的次级结构。本研究探索了原油直接加氢改质的新方法,以提高沥青质超分子解缔性能,促进劣质原油的高效利用。
中图分类号:
许顺年, 冯晓, 史得军, 孙志国, 张宸玮, 王刚, 高金森, 徐春明. 原油直接加氢改质及其沥青质超分子解缔反应的研究[J]. 化工学报, 2025, 76(2): 812-824.
Shunnian XU, Xiao FENG, Dejun SHI, Zhiguo SUN, Chenwei ZHANG, Gang WANG, Jinsen GAO, Chunming XU. Research on direct hydro-upgrading of crude oils and the dissociation of asphaltene supramolecules[J]. CIESC Journal, 2025, 76(2): 812-824.
指标 | BC | BH |
---|---|---|
ρ20 /(kg·m-3) | 881.5 | 921.8 |
残炭/%(质量) | 7.92 | 13.75 |
元素组成/%(质量) | ||
C | 84.05 | 84.56 |
H | 12.53 | 11.34 |
S | 3.19 | 3.72 |
N | 0.23 | 0.38 |
金属含量/(μg·g-1) | 66.5 | 92.5 |
胶质/%(质量) | 7.81 | 21.72 |
沥青质/%(质量) | 2.85 | 4.63 |
馏分段收率/%(质量) | ||
IBP~180℃ | 10.2 | — |
180~350℃ | 24.5 | 2.2 |
350~500℃ | 20.0 | 31.2 |
>500℃ | 45.3 | 66.6 |
表1 原料油基本性质
Table 1 The properties of feedstocks
指标 | BC | BH |
---|---|---|
ρ20 /(kg·m-3) | 881.5 | 921.8 |
残炭/%(质量) | 7.92 | 13.75 |
元素组成/%(质量) | ||
C | 84.05 | 84.56 |
H | 12.53 | 11.34 |
S | 3.19 | 3.72 |
N | 0.23 | 0.38 |
金属含量/(μg·g-1) | 66.5 | 92.5 |
胶质/%(质量) | 7.81 | 21.72 |
沥青质/%(质量) | 2.85 | 4.63 |
馏分段收率/%(质量) | ||
IBP~180℃ | 10.2 | — |
180~350℃ | 24.5 | 2.2 |
350~500℃ | 20.0 | 31.2 |
>500℃ | 45.3 | 66.6 |
指标 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|
ρ20 /(kg·m-3) | 884.9 | 866.4 | 868.2 |
残炭/%(质量) | 5.48 | 3.55 | 3.79 |
元素组成/%(质量) | |||
C | 86.44 | 86.33 | 86.49 |
H | 12.38 | 13.40 | 13.18 |
S | 0.93 | 0.20 | 0.30 |
N | 0.25 | 0.07 | 0.03 |
金属含量/(μg·g-1) | 18.1 | 19.3 | 17.3 |
胶质/%(质量) | 17.63 | 5.71 | 6.09 |
沥青质/%(质量) | 2.70 | 0.27 | 0.41 |
表2 加氢油品基本性质
Table 2 The properties of hydrogenation oils
指标 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|
ρ20 /(kg·m-3) | 884.9 | 866.4 | 868.2 |
残炭/%(质量) | 5.48 | 3.55 | 3.79 |
元素组成/%(质量) | |||
C | 86.44 | 86.33 | 86.49 |
H | 12.38 | 13.40 | 13.18 |
S | 0.93 | 0.20 | 0.30 |
N | 0.25 | 0.07 | 0.03 |
金属含量/(μg·g-1) | 18.1 | 19.3 | 17.3 |
胶质/%(质量) | 17.63 | 5.71 | 6.09 |
沥青质/%(质量) | 2.70 | 0.27 | 0.41 |
指标 | 初始沥青质 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|---|
fA | 0.50 | 0.55 | 0.59 | 0.58 |
fP | 0.39 | 0.33 | 0.24 | 0.25 |
RA | 61.8 | 55.4 | 46.6 | 49.0 |
RN | 13.5 | 12.4 | 13.8 | 14.7 |
HAU/CA | 0.42 | 0.40 | 0.32 | 0.33 |
表3 非晶纳米聚集体的结构参数
Table 3 Structural parameters of the amorphous nanoaggregates
指标 | 初始沥青质 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|---|
fA | 0.50 | 0.55 | 0.59 | 0.58 |
fP | 0.39 | 0.33 | 0.24 | 0.25 |
RA | 61.8 | 55.4 | 46.6 | 49.0 |
RN | 13.5 | 12.4 | 13.8 | 14.7 |
HAU/CA | 0.42 | 0.40 | 0.32 | 0.33 |
指标 | 初始沥青质 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|---|
fAXRD | 0.20 | 0.23 | 0.27 | 0.23 |
dm/nm | 0.36 | 0.36 | 0.35 | 0.36 |
dγ/nm | 0.57 | 0.56 | 0.56 | 0.56 |
La/nm | 2.38 | 1.73 | 1.67 | 1.72 |
Lc/nm | 1.75 | 1.67 | 1.60 | 1.64 |
N | 5.97 | 5.73 | 5.47 | 5.61 |
Nar | 8.91 | 6.48 | 6.26 | 6.45 |
表4 似晶纳米聚集体的结构参数
Table 4 Structural parameters of the amorphous nanoaggregates
指标 | 初始沥青质 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|---|
fAXRD | 0.20 | 0.23 | 0.27 | 0.23 |
dm/nm | 0.36 | 0.36 | 0.35 | 0.36 |
dγ/nm | 0.57 | 0.56 | 0.56 | 0.56 |
La/nm | 2.38 | 1.73 | 1.67 | 1.72 |
Lc/nm | 1.75 | 1.67 | 1.60 | 1.64 |
N | 5.97 | 5.73 | 5.47 | 5.61 |
Nar | 8.91 | 6.48 | 6.26 | 6.45 |
指标 | 初始沥青质 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|---|
n | 5.3 | 4.4 | 2.4 | 2.7 |
fA | 0.50 | 0.55 | 0.59 | 0.58 |
fP | 0.39 | 0.33 | 0.24 | 0.25 |
11.6 | 12.6 | 19.8 | 18.3 | |
2.5 | 2.8 | 5.9 | 5.5 | |
HAU/CA | 0.42 | 0.40 | 0.32 | 0.33 |
表5 分子单元的结构参数
Table 5 Structural parameters of the molecular units
指标 | 初始沥青质 | BH-HT | BC-HT1 | BC-HT2 |
---|---|---|---|---|
n | 5.3 | 4.4 | 2.4 | 2.7 |
fA | 0.50 | 0.55 | 0.59 | 0.58 |
fP | 0.39 | 0.33 | 0.24 | 0.25 |
11.6 | 12.6 | 19.8 | 18.3 | |
2.5 | 2.8 | 5.9 | 5.5 | |
HAU/CA | 0.42 | 0.40 | 0.32 | 0.33 |
1 | 李明丰, 吴昊, 沈宇, 等. “双碳”背景下炼化企业高质量发展路径探讨[J]. 石油学报(石油加工), 2022, 38(3): 493-499. |
Li M F, Wu H, Shen Y, et al. High-quality development path for refining and chemical enterprises under the dual carbon background[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(3): 493-499. | |
2 | 周红军, 周颖, 徐春明. 中国碳达峰碳中和目标下炼化一体化新路径与实践[J]. 化工进展, 2022, 41(4): 2226-2230. |
Zhou H J, Zhou Y, Xu C M. Exploration of refining and chemical integration under China's dualcarbon target[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2226-2230. | |
3 | 王刚, 孙静, 方东, 等. 分子炼油为导向的催化裂化加工重质油策略[J]. 中国科学: 化学, 2018, 48(4): 362-368. |
Wang G, Sun J, Fang D, et al. Molecular-refining oriented strategy of catalytic cracking for processing heavy oil[J]. Scientia Sinica (Chimica), 2018, 48(4): 362-368. | |
4 | 王威, 李明丰, 王琪, 等. 馏分炼油向组分炼油转变实现炼油向化工高效转型[J]. 石油炼制与化工, 2024, 55(6): 1-8. |
Wang W, Li M F, Wang Q, et al. Component-based refining accelerating the transition of oil refining to chemicals production[J]. Petroleum Processing and Petrochemicals, 2024, 55(6): 1-8. | |
5 | 聂红, 杨清河, 戴立顺, 等. 重油高效转化关键技术的开发及应用[J]. 石油炼制与化工, 2012, 43(1): 1-6. |
Nie H, Yang Q H, Dai L S, et al. Development and commercial application of key technology for efficient conversion of heavy oil[J]. Petroleum Processing and Petrochemicals, 2012, 43(1): 1-6. | |
6 | 何盛宝. 新形势下我国化工行业的创新与发展[J]. 化工进展, 2021, 40(1): 1-5. |
He S B. Innovation and development of China's chemical industry against new situation[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 1-5. | |
7 | 李大东. 我国炼油工业转型发展的技术策略[J]. 石油炼制与化工, 2024, 55(1): 7-17. |
Li D D. Technical strategies for transformation and development of China petroleum processing industry[J]. Petroleum Processing and Petrochemicals, 2024, 55(1): 7-17. | |
8 | 张庆军, 刘文洁, 王鑫, 等. 国外渣油加氢技术研究进展[J]. 化工进展, 2015, 34(8): 2988-3002. |
Zhang Q J, Liu W J, Wang X, et al. Research progress in hydroprocessing technology for imported residuum[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 2988-3002. | |
9 | 刘勇军, 付庆涛, 刘晨光. 渣油加氢脱金属反应机理的研究进展[J]. 化工进展, 2009, 28(9): 1546-1552. |
Liu Y J, Fu Q T, Liu C G. Advances in reaction mechanism of residua hydrodemetallization[J]. Chemical Industry and Engineering Progress, 2009, 28(9): 1546-1552. | |
10 | 张宸玮, 方东, 金翔, 等. 不同基属重油加氢改质与沥青质超分子缔合体解构[J]. 石油学报(石油加工), 2024, 40(5): 1364-1372. |
Zhang C W, Fang D, Jin X, et al. Hydrogenation of different base heavy oils and deconstruction of asphaltene supramolecular aggregates[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2024, 40(5): 1364-1372. | |
11 | 刘爽, 张霖宙, 许志明, 等. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
Liu S, Zhang L Z, Xu Z M, et al. Study on molecular level composition correlation of viscosity of residual oil and its components[J]. CIESC Journal, 2023, 74(8): 3226-3241. | |
12 | 周惠敏, 田莹, 刘思亿, 等. 沥青质分子缔合作用机制、表征、理论计算与应用研究进展[J]. 化工学报, 2023, 74(10): 3995-4019. |
Zhou H M, Tian Y, Liu S Y, et al. Advances in molecular mechanisms, characterization, theoretical calculation and applications on asphaltenes aggregation[J]. CIESC Journal, 2023, 74(10): 3995-4019. | |
13 | 徐芳, 卞贺, 韦胜超, 等. 石油沥青质超分子聚集及解聚研究进展[J]. 石油学报(石油加工), 2022, 38(4): 958-969. |
Xu F, Bian H, Wei S C, et al. Research progress on supramolecular aggregation of petroleum asphaltenes and their disaggregation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(4): 958-969. | |
14 | Nguyen M T, Le Tri Nguyen D, Xia C L, et al. Recent advances in asphaltene transformation in heavy oil hydroprocessing: progress, challenges, and future perspectives[J]. Fuel Processing Technology, 2021, 213: 106681. |
15 | Chacón-Patiño M L, Rowland S M, Rodgers R P. Advances in asphaltene petroleomics(part 1): Asphaltenes are composed of abundant island and archipelago structural motifs[J]. Energy & Fuels, 2017, 31(12): 13509-13518. |
16 | Chacón-Patiño M L, Rowland S M, Rodgers R P. Advances in asphaltene petroleomics(part 2): Selective separation method that reveals fractions enriched in island and archipelago structural motifs by mass spectrometry[J]. Energy & Fuels, 2018, 32(1): 314-328. |
17 | 刘涛, 金喆, 于福帅, 等. 中低温煤焦油在不同氢初压下重质组分组成结构的变化规律[J]. 高校化学工程学报, 2024, 38(4): 586-597. |
Liu T, Jin Z, Yu F S, et al. The variation of composition and structure of heavy components of medium and low temperature coal tar under different initial hydrogen pressures[J]. Journal of Chemical Engineering of Chinese Universities, 2024, 38(4): 586-597. | |
18 | 徐春明, 杨朝合. 石油炼制工程[M]. 4版. 北京: 石油工业出版社, 2009: 28-52. |
Xu C M, Yang C H. Petroleum Refining Engineering[M]. 4th ed. Beijing: Petroleum Industry Press, 2009: 28-52. | |
19 | Yen T F, Erdman J G, Pollack S S. Investigation of the structure of petroleum asphaltenes by X-ray diffraction[J]. Analytical Chemistry, 1961, 33: 1587-1594. |
20 | Dickie J P, Yen T F. Macrostructures of the asphaltic fractions by various instrumental methods[J]. Analytical Chemistry, 1967, 39(14): 1847-1852. |
21 | Mullins O C. The asphaltenes[J]. Annual Review of Analytical Chemistry, 2011, 4: 393-418. |
22 | Mullins O C. The modified Yen model[J]. Energy & Fuels, 2010, 24(4): 2179-2207. |
23 | Chacón-Patiño M L, Rowland S M, Rodgers R P. Advances in asphaltene petroleomics(part 3): Dominance of island or archipelago structural motif is sample dependent[J]. Energy & Fuels, 2018, 32(9): 9106-9120. |
24 | Schuler B, Zhang Y L, Liu F, et al. Overview of asphaltene nanostructures and thermodynamic applications[J]. Energy & Fuels, 2020, 34(12): 15082-15105. |
25 | Gray M R, Tykwinski R R, Stryker J M, et al. Supramolecular assembly model for aggregation of petroleum asphaltenes[J]. Energy & Fuels, 2011, 25(7): 3125-3134. |
26 | 盛强, 王刚, 金楠, 等. 石油沥青质的微观结构分析和轻质化[J]. 化工进展, 2019, 38(3): 1147-1159. |
Sheng Q, Wang G, Jin N, et al. Petroleum asphaltene micro-structure analysis and lightening[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1147-1159. | |
27 | Jin N, Wang G, Han S, et al. Hydroconversion behavior of asphaltenes under liquid-phase hydrogenation conditions[J]. Energy & Fuels, 2016, 30(4): 2594-2603. |
28 | 宋江峰. 原油中沥青质的稳定性及其影响因素[J]. 油田化学, 2023, 40(4): 627-635. |
Song J F. Stability and influencing factors of asphaltene in crude oil[J]. Oilfield Chemistry, 2023, 40(4): 627-635. | |
29 | Wang S Q, Liu J J, Zhang L Y, et al. Interaction forces between asphaltene surfaces in organic solvents[J]. Langmuir, 2010, 26(1): 183-190. |
30 | 许友好, 汪燮卿, 舒兴田. 原油最大化生产化工原料的技术思考及相关技术开发[J]. 石油炼制与化工, 2019, 50(11): 1-10. |
Xu Y H, Wang X Q, Shu X T. Technical consideration and relevant technological development on maximizing chemicals from crude oil[J]. Petroleum Processing and Petrochemicals, 2019, 50(11): 1-10. | |
31 | 刘美佳, 王刚, 张忠东, 等. 石蜡基原油直接催化裂解制低碳烯烃新型炼化工艺的开发[J]. 化工进展, 2023, 42(10): 5191-5199. |
Liu M J, Wang G, Zhang Z D, et al. Development of a new refining process for direct catalytic cracking of paraffin based crude oil to produce light olefins[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5191-5199. | |
32 | 王红秋. 我国炼油向化工转型现状与思考[J]. 化工进展, 2020, 39(11): 4401-4407. |
Wang H Q. Status and thinking of refining to chemical transformation in China[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4401-4407. | |
33 | 吴青. 原油(重油)制化学品的技术及其进展(Ⅰ): 原油蒸汽裂解技术[J]. 炼油技术与工程, 2022, 52(4): 1-10. |
Wu Q. Technology and progress in crude oil to chemicals(part 1): Crude oil steam cracking technology[J]. Petroleum Refinery Engineering, 2022, 52(4): 1-10. | |
34 | 孙克宁, 侯瑞君, 张春刚. 一种含硫/高硫原油预加氢脱硫工艺: 107057755A[P]. 2017-08-18. |
Sun K N, Hou R J, Zhang C G. A pre-hydrodesulfurization process for sulfur or high sulfur crude oil: 107057755A[P]. 2017-08-18. | |
35 | Guinier A, Fournet G, Walker C B, et al. Small-angle scattering of X-rays[J]. Physics Today, 1956, 9(8): 38-39. |
36 | 梁文杰. 重质油化学[M]. 东营: 石油大学出版社, 2000: 68-80. |
Liang W J. Heavy Oil Chemistry[M]. Dongying: China University of Petroleum Press, 2000: 68-80. | |
37 | AlHumaidan F S, Hauser A, Rana M S, et al. Changes in asphaltene structure during thermal cracking of residual oils: XRD study[J]. Fuel, 2015, 150: 558-564. |
38 | Prins R, Egorova M, Röthlisberger A, et al. Mechanisms of hydrodesulfurization and hydrodenitrogenation[J]. Catalysis Today, 2006, 111(1/2): 84-93. |
39 | Tanaka R, Hunt J E, Winans R E, et al. Aggregates structure analysis of petroleum asphaltenes with small-angle neutron scattering[J]. Energy & Fuels, 2003, 17(1): 127-134. |
40 | Ashoori S, Sharifi M, Masoumi M, et al. The relationship between SARA fractions and crude oil stability[J]. Egyptian Journal of Petroleum, 2017, 26(1): 209-213. |
41 | Santos Silva H, Alfarra A, Vallverdu G, et al. Asphaltene aggregation studied by molecular dynamics simulations: role of the molecular architecture and solvents on the supramolecular or colloidal behavior[J]. Petroleum Science, 2019, 16(3): 669-684. |
[1] | 徐艳焦, 楼琳瑾, 樊茁钦, 张浩淼, 王靖岱, 阳永荣. 甲基铝氧烷的改性技术研究进展[J]. 化工学报, 2025, 76(2): 454-465. |
[2] | 何传超, 周静红, 曹约强, 施尧, 周兴贵. Ag/SiO2催化草酸酯加氢制乙醇酸甲酯的床层-颗粒双尺度耦合模拟研究[J]. 化工学报, 2025, 76(2): 654-666. |
[3] | 李奕菲, 苏沿霏, 尹甜, 姜浩强, 许志明, 张霖宙, 史权, 徐春明. 基于GC×GC-TOF MS的煤液化产物油分子组成结构表征[J]. 化工学报, 2025, 76(2): 543-553. |
[4] | 党法璐, 孙志国, 高照, 王刚, 陈政宇, 张霖宙, 连竞存, 刘美佳, 张忠东, 刘超伟. 原油一步法催化裂解制低碳烯烃:实验和反应路径研究[J]. 化工学报, 2025, 76(2): 667-685. |
[5] | 王绍吉, 郝矿荣, 陈磊. 基于联邦学习的聚酯纤维酯化过程温度预测研究[J]. 化工学报, 2025, 76(1): 283-295. |
[6] | 杨晨, 毛伟, 董兴宗, 田松, 赵锋伟, 吕剑. 选择性加氢脱氯合成烯烃研究进展[J]. 化工学报, 2025, 76(1): 53-70. |
[7] | 郭骐瑞, 任丽媛, 陈康, 黄翔宇, 马卫华, 肖乐勤, 周伟良. 用于HTPB推进剂浆料的静态混合管数值模拟[J]. 化工学报, 2024, 75(S1): 206-216. |
[8] | 谢慧慧, 姜佳鑫, 王鑫, 李正, 郭鑫, 吕欣然, 王凌云, 刘杨. 深共晶溶剂聚合物包覆膜传输分离铂、钯的研究[J]. 化工学报, 2024, 75(S1): 235-243. |
[9] | 唐溯, 郑子鏖, 魏翰泽, 许晓玲, 翟晓强. PMMA/PEG600/CNT复合定型相变材料制备与导热强化[J]. 化工学报, 2024, 75(S1): 309-320. |
[10] | 孙娜娜, 董红妹, 郭文豪, 柳健, 胡建波, 靳爽. 改性磁性纳米粒子稳定的稠油O/W型乳状液的流变性影响因素及管输压降预测模型[J]. 化工学报, 2024, 75(S1): 143-157. |
[11] | 张丽萍, 孟晓荣, 宋锦峰, 杜金晶. VO2@KH550/570@PS复合薄膜的制备及其热致相变性能[J]. 化工学报, 2024, 75(9): 3348-3359. |
[12] | 胡德政, 王榕, 王世栋, 杨文菲, 张宏伟, 袁珮. 兼具加氢和脱硫活性的富含Ni δ+非晶态NiP@γ-Al2O3催化剂的构筑及其用于石油树脂加氢的性能研究[J]. 化工学报, 2024, 75(9): 3152-3162. |
[13] | 杜海燕, 朱凯, 游峰, 王金凤, 赵一帆, 张楠, 李英. 用于应变传感器的自愈合抗冻离子水凝胶[J]. 化工学报, 2024, 75(7): 2709-2722. |
[14] | 杨露, 刘聪聪, 孟彤彤, 张博远, 杨腾飞, 邓文安, 王晓斌. 分散型催化剂在煤/重油共炼体系中的加氢抑焦作用[J]. 化工学报, 2024, 75(7): 2556-2564. |
[15] | 黄志鸿, 周利, 柴士阳, 吉旭. 耦合加氢装置优化的多周期氢网络集成[J]. 化工学报, 2024, 75(5): 1951-1965. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 45
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 98
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||