化工学报 ›› 2025, Vol. 76 ›› Issue (2): 797-811.DOI: 10.11949/0438-1157.20240791

• 能源和环境工程 • 上一篇    

基于分子模拟的新型双阳离子质子型离子液体捕集CO2研究

张奇1(), 张睿1, 郑涛1, 曹欣1, 刘植昌1, 刘海燕1, 徐春明1, 张荣2, 孟祥海1()   

  1. 1.中国石油大学(北京)重质油全国重点实验室,北京 102249
    2.中国科学院山西煤炭化学研究所煤炭高效低碳利用全国重点实验室,山西 太原 030001
  • 收稿日期:2024-07-13 修回日期:2024-08-17 出版日期:2025-03-25 发布日期:2025-03-10
  • 通讯作者: 孟祥海
  • 作者简介:张奇(1995—),男,博士研究生,zhangqicup@126.com
  • 基金资助:
    国家自然科学基金项目(22021004);煤炭高效低碳利用全国重点实验室开放课题基金项目(J24-25-202)

Revealing CO2 capture by a novel dual-cation protic ionic liquid using molecular simulation

Qi ZHANG1(), Rui ZHANG1, Tao ZHENG1, Xin CAO1, Zhichang LIU1, Haiyan LIU1, Chunming XU1, Rong ZHANG2, Xianghai MENG1()   

  1. 1.State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
    2.State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
  • Received:2024-07-13 Revised:2024-08-17 Online:2025-03-25 Published:2025-03-10
  • Contact: Xianghai MENG

摘要:

有机超强碱质子离子液体作为一种绿色溶剂,在CO2捕集领域展现出独特优势。选择由1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)和N-叔丁基二乙醇胺(NtBuDEA)反应生成的有机超强碱双阳离子质子型离子液体[DBUH]2[NtBuDEA]为吸收剂,通过密度泛函理论和分子动力学模拟分析其与CO2之间的微观结构、作用机理及吸收过程。研究发现,阴离子[NtBuDEA]2-的烷基氧负离子在CO2吸收过程中发挥关键作用,与CO2发生化学键合作用,生成烷基碳酸盐[NtBuDEACOO]2-。CO2分子从气相扩散到吸收剂表面并在气/液界面处聚集,其吸收量在达到最大值后围绕平均值波动。温度和压力是影响CO2吸收的关键因素,降低吸收温度和提高CO2分压有利于CO2的捕集。水的存在虽降低了吸收剂与CO2的相互作用能,却提高了CO2的传输性能。

关键词: 碳捕集, 离子液体, 密度泛函理论, 分子动力学, 微观机理

Abstract:

As a green solvent, organic superbase proton-type ionic liquids show unique advantages in the field of CO2 capture. In this work, we investigated the organic super base dual-cation protic ionic liquid [DBUH]2[NtBuDEA], synthesized via the reaction between 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and N-tert-butyl-diethanolamine (NtBuDEA). The microstructure, action mechanism and absorption process between the [DBUH]2[NtBuDEA] and CO2 were analyzed by density functional theory (DFT) and molecular dynamics (MD) simulation. The results demonstrated that the anion [NtBuDEA]2- is critical for CO2 absorption, engaging in chemical bonding with CO2 to form the alkyl carbonate [NtBuDEACOO]2-. Additionally, CO2 molecules diffuse rapidly from the gas phase to the surface of absorbent and accumulate at the gas/absorbent interface. The amount of absorbed CO2 fluctuates around the average value after reaching maximum absorption. Temperature and pressure are key factors influencing CO2 uptake and it is favorable for CO2 capture through decreasing the reaction temperature and increasing the CO2 partial pressure. Although the existence of water reduces the interaction energy between the absorbent and CO2, it enhances CO2 transfer performance, particularly under high pressure conditions, where the CO2 absorption capacity per molar ionic liquid in water-containing ionic liquids surpasses that in pure ionic liquids.

Key words: CO2 capture, ionic liquids, density functional theory, molecular dynamics, microcosmic mechanism

中图分类号: