化工学报 ›› 2025, Vol. 76 ›› Issue (2): 797-811.DOI: 10.11949/0438-1157.20240791
• 能源和环境工程 • 上一篇
张奇1(), 张睿1, 郑涛1, 曹欣1, 刘植昌1, 刘海燕1, 徐春明1, 张荣2, 孟祥海1(
)
收稿日期:
2024-07-13
修回日期:
2024-08-17
出版日期:
2025-03-25
发布日期:
2025-03-10
通讯作者:
孟祥海
作者简介:
张奇(1995—),男,博士研究生,zhangqicup@126.com
基金资助:
Qi ZHANG1(), Rui ZHANG1, Tao ZHENG1, Xin CAO1, Zhichang LIU1, Haiyan LIU1, Chunming XU1, Rong ZHANG2, Xianghai MENG1(
)
Received:
2024-07-13
Revised:
2024-08-17
Online:
2025-03-25
Published:
2025-03-10
Contact:
Xianghai MENG
摘要:
有机超强碱质子离子液体作为一种绿色溶剂,在CO2捕集领域展现出独特优势。选择由1,8-二氮杂双环[5.4.0]十一碳-7-烯(DBU)和N-叔丁基二乙醇胺(NtBuDEA)反应生成的有机超强碱双阳离子质子型离子液体[DBUH]2[NtBuDEA]为吸收剂,通过密度泛函理论和分子动力学模拟分析其与CO2之间的微观结构、作用机理及吸收过程。研究发现,阴离子[NtBuDEA]2-的烷基氧负离子在CO2吸收过程中发挥关键作用,与CO2发生化学键合作用,生成烷基碳酸盐[NtBuDEACOO]2-。CO2分子从气相扩散到吸收剂表面并在气/液界面处聚集,其吸收量在达到最大值后围绕平均值波动。温度和压力是影响CO2吸收的关键因素,降低吸收温度和提高CO2分压有利于CO2的捕集。水的存在虽降低了吸收剂与CO2的相互作用能,却提高了CO2的传输性能。
中图分类号:
张奇, 张睿, 郑涛, 曹欣, 刘植昌, 刘海燕, 徐春明, 张荣, 孟祥海. 基于分子模拟的新型双阳离子质子型离子液体捕集CO2研究[J]. 化工学报, 2025, 76(2): 797-811.
Qi ZHANG, Rui ZHANG, Tao ZHENG, Xin CAO, Zhichang LIU, Haiyan LIU, Chunming XU, Rong ZHANG, Xianghai MENG. Revealing CO2 capture by a novel dual-cation protic ionic liquid using molecular simulation[J]. CIESC Journal, 2025, 76(2): 797-811.
计算项目/方法 | 计算参数 |
---|---|
functional | Perdew-Burke-Ernzerhof (PBE) |
basis set | TZV2P-MOLOPT-PBE-GTH |
dispersion correction | DFT-D3(BJ) |
CUTOFF | 400 Ry |
EPS_SCF | 1 × 10-7 Ha |
MAX_DR | 0.003 Bohr |
MAX_FORCE | 0.00045 Ha/Bohr |
RMS_DR | 0.0015 Bohr |
RMS_FORCE | 0.0003 Ha/Bohr |
表1 量化计算中的主要参数
Table 1 Main parameters in quantum calculations
计算项目/方法 | 计算参数 |
---|---|
functional | Perdew-Burke-Ernzerhof (PBE) |
basis set | TZV2P-MOLOPT-PBE-GTH |
dispersion correction | DFT-D3(BJ) |
CUTOFF | 400 Ry |
EPS_SCF | 1 × 10-7 Ha |
MAX_DR | 0.003 Bohr |
MAX_FORCE | 0.00045 Ha/Bohr |
RMS_DR | 0.0015 Bohr |
RMS_FORCE | 0.0003 Ha/Bohr |
种类 | ΔH/(kJ·mol-1) | ΔG/(kJ·mol-1) |
---|---|---|
[NtBuDEA]2- - CO2 | -98.67 | -54.77 |
[3-MethylPyr]- - CO2 | -75.41 | -30.02 |
[4-MethylPyr]- - CO2 | -74.98 | -30.53 |
[Pyr]- - CO2 | -72.29 | -29.50 |
[4-BromoPyr]- - CO2 | -53.58 | -13.54 |
[3-PhenylPyr]- - CO2 | -52.03 | -11.72 |
表2 不同阴离子-CO2系统的热力学参数对比
Table 2 Thermochemical parameters comparison of different anions-CO2 systems
种类 | ΔH/(kJ·mol-1) | ΔG/(kJ·mol-1) |
---|---|---|
[NtBuDEA]2- - CO2 | -98.67 | -54.77 |
[3-MethylPyr]- - CO2 | -75.41 | -30.02 |
[4-MethylPyr]- - CO2 | -74.98 | -30.53 |
[Pyr]- - CO2 | -72.29 | -29.50 |
[4-BromoPyr]- - CO2 | -53.58 | -13.54 |
[3-PhenylPyr]- - CO2 | -52.03 | -11.72 |
图8 吸收平衡后的CO2吸收量和平衡前吸收剂与CO2的相互作用能
Fig.8 The CO2 amount after absorption equilibrium and the interaction energy between the absorbent and CO2 prior to equilibrium
初始气相压力/atm | CO2在气相的分子数 |
---|---|
1.5 | 186 |
2 | 248 |
2.5 | 310 |
3 | 372 |
3.5 | 434 |
4 | 496 |
5 | 620 |
6 | 744 |
8 | 992 |
10 | 1240 |
表3 298.15 K时不同压力条件下吸收系统气相中CO2分子的初始数量
Table 3 Initial number of CO2 molecules in gas phase for the absorption systems at various pressures conditions and at 298.15 K
初始气相压力/atm | CO2在气相的分子数 |
---|---|
1.5 | 186 |
2 | 248 |
2.5 | 310 |
3 | 372 |
3.5 | 434 |
4 | 496 |
5 | 620 |
6 | 744 |
8 | 992 |
10 | 1240 |
图12 CO2在纯离子液体与含30%(质量分数)水的离子液体体系中均方位移与扩散系数的比较
Fig.12 Comparison of mean square displacement and diffusion coefficient of CO2 in pure ionic liquid and 30%(mass) water-containing systems
1 | Bai Y G, Wang K X, Wang L L, et al. Experimental investigation on post-combustion CO2 capture for [Bpy][NO3] and MEA aqueous blends with lower regeneration energy[J]. Separation and Purification Technology, 2023, 327: 124846. |
2 | 唐政, 郑涛, 刘晗, 等. 双金属卤化物络合萃取分离直馏石脑油中的芳烃[J]. 化工学报, 2023, 74(12): 4926-4933. |
Tang Z, Zheng T, Liu H, et al. Separation of aromatics from straight-run naphtha by complexation extraction using bimetallic halides[J]. CIESC Journal, 2023, 74(12): 4926-4933. | |
3 | 孟祥海, 张睿, 刘海燕, 等. 复合离子液体碳四烷基化技术开发与应用[J]. 中国科学: 化学, 2018, 48(4): 387-396. |
Meng X H, Zhang R, Liu H Y, et al. Development and application of composite ionic liquid catalyzed isobutane alkylation technology[J]. Scientia Sinica (Chimica), 2018, 48(4): 387-396. | |
4 | 欧阳萍, 张睿, 周剑, 等. 铜铝双金属复合离子液体的电化学行为及电沉积铜机理[J]. 化工学报, 2022, 73(7): 3212-3221. |
Ouyang P, Zhang R, Zhou J, et al. Electrochemical behavior and copper electrodeposition mechanism of Cu-Al bimetallic composite ionic liquid[J]. CIESC Journal, 2022, 73(7): 3212-3221. | |
5 | Zeng S J, Zhang X P, Bai L, et al. Ionic-liquid-based CO2 capture systems: structure, interaction and process[J]. Chemical Reviews, 2017, 117(14): 9625-9673. |
6 | Sheridan Q R, Schneider W F, Maginn E J. Role of molecular modeling in the development of CO2-reactive ionic liquids[J]. Chemical Reviews, 2018, 118(10): 5242-5260. |
7 | Ruan J W, Ye X Z, Wang R Z, et al. Experimental and theoretical study on efficient CO2 absorption coordinated by molecules and ions of DBN and 1,2,4-triazole formed deep eutectic solvents[J]. Fuel, 2023, 334: 126709. |
8 | Xiong W J, Shi M Z, Peng L L, et al. Low viscosity superbase protic ionic liquids for the highly efficient simultaneous removal of H2S and CO2 from CH4 [J]. Separation and Purification Technology, 2021, 263: 118417. |
9 | Zhang Q, Bahamon D, Alkhatib I I I, et al. Molecular insights into the CO2 absorption mechanism by superbase protic ionic liquids by a combined density functional theory and molecular dynamics approach[J]. Journal of Molecular Liquids, 2024, 394: 123683. |
10 | Heldebrant D J, Yonker C R, Jessop P G, et al. Organic liquid CO2 capture agents with high gravimetric CO2 capacity[J]. Energy & Environmental Science, 2008, 1(4): 487-493. |
11 | Zhu X, Song M L, Xu Y J. DBU-based protic ionic liquids for CO2 capture[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8192-8198. |
12 | Zhang X M, Xiong W J, Peng L L, et al. Highly selective absorption separation of H2S and CO2 from CH4 by novel azole-based protic ionic liquids[J]. AIChE Journal, 2020, 66(6): e16936. |
13 | 朱先会, 王甫, 夏杰成, 等. 功能型离子液体协同吸收NH3和CO2的密度泛函理论研究[J]. 化工学报, 2022, 73(10): 4324-4334. |
Zhu X H, Wang F, Xia J C, et al. Density functional theory investigation on the NH3 and CO2 absorption by functional ionic liquids[J]. CIESC Journal, 2022, 73(10): 4324-4334. | |
14 | Shaikh A R, Vidal-López A, Brotons-Rufes A, et al. Amino acid ionic liquids as efficient catalysts for CO2 capture: a combined static and dynamic approach[J]. Results in Surfaces and Interfaces, 2024, 14: 100175. |
15 | Wang B H, Zhu M X, Liu M Z, et al. Design of novel dual functional ionic liquids and DFT study on their CO2 absorption mechanism[J]. Journal of Molecular Liquids, 2022, 366: 120340. |
16 | Yoon B, Voth G A. Elucidating the molecular mechanism of CO2 capture by amino acid ionic liquids[J]. Journal of the American Chemical Society, 2023, 145(29): 15663-15667. |
17 | Frisch M, Trucks G W, Schlegel H B, et al. Gaussian 09[M]. Wallingford CT: Gaussian, Inc., 2013. |
18 | Lee C, Yang W T, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B, 1988, 37(2): 785-789. |
19 | Becke A D. Density‐functional thermochemistry (Ⅲ): The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7): 5648-5652. |
20 | Gordon M S, Binkley J S, Pople J A, et al. Self-consistent molecular-orbital methods (22): small split-valence basis sets for second-row elements[J]. Journal of the American Chemical Society, 1982, 104(10): 2797-2803. |
21 | Martínez L, Andrade R, Birgin E G, et al. PACKMOL: a package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Chemistry, 2009, 30(13): 2157-2164. |
22 | Lu T, Chen F W. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592. |
23 | Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38. |
24 | Kühne T D, Iannuzzi M, Del Ben M, et al. CP2K: an electronic structure and molecular dynamics software package-quickstep: efficient and accurate electronic structure calculations[J]. The Journal of Chemical Physics, 2020, 152(19): 194103. |
25 | Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling[J]. The Journal of Chemical Physics, 2007, 126(1): 014101. |
26 | van der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718. |
27 | Essmann U, Perera L, Berkowitz M L, et al. A smooth particle mesh Ewald method[J]. The Journal of Chemical Physics, 1995, 103(19): 8577-8593. |
28 | Berendsen H J C, Postma J P M, van Gunsteren W F, et al. Molecular dynamics with coupling to an external bath[J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690. |
29 | Wang J M, Wolf R M, Caldwell J W, et al. Development and testing of a general amber force field[J]. Journal of Computational Chemistry, 2004, 25(9): 1157-1174. |
30 | Grimme S, Bannwarth C, Shushkov P. A robust and accurate tight-binding quantum chemical method for structures, vibrational frequencies, and noncovalent interactions of large molecular systems parametrized for all spd-block elements (Z = 1-86)[J]. Journal of Chemical Theory and Computation, 2017, 13(5): 1989-2009. |
31 | Fu H, Wang X Y, Sang H N, et al. The study of bicyclic amidine-based ionic liquids as promising carbon dioxide capture agents[J]. Journal of Molecular Liquids, 2020, 304: 112805. |
32 | Zheng W Z, Cao P, Yuan Y, et al. Experimental and modeling study of isobutane alkylation with C4 olefin catalyzed by Brønsted acidic ionic liquid/sulfuric acid[J]. Chemical Engineering Journal, 2019, 377: 119578. |
[1] | 杨晋宁, 王卫凡, 徐冬, 刘毅, 翁小涵, 原野, 王志. 工业烟道气碳捕集膜技术放大研究进展[J]. 化工学报, 2025, 76(2): 504-518. |
[2] | 姚佳逸, 张东辉, 唐忠利, 李文彬. 基于二级双回流的变压吸附捕碳工艺研究[J]. 化工学报, 2025, 76(2): 744-754. |
[3] | 崔家馨, 殷梦凡, 郑涛, 刘晗, 张睿, 刘植昌, 刘海燕, 徐春明, 孟祥海. 铝铜双金属离子液体在1-己烯/正己烷分离中的应用[J]. 化工学报, 2025, 76(2): 686-694. |
[4] | 冯海军, 章冰璇, 周健. 图神经网络模型预测和解释离子液体毒性的研究[J]. 化工学报, 2025, 76(1): 93-106. |
[5] | 杨勇, 祖子轩, 李煜坤, 王东亮, 范宗良, 周怀荣. T型圆柱形微通道内CO2碱液吸收数值模拟[J]. 化工学报, 2024, 75(S1): 135-142. |
[6] | 邱知, 谭明. 聚离子液体膜的制备及其在低钠高钾健康酱油中的应用[J]. 化工学报, 2024, 75(S1): 244-250. |
[7] | 杜海燕, 朱凯, 游峰, 王金凤, 赵一帆, 张楠, 李英. 用于应变传感器的自愈合抗冻离子水凝胶[J]. 化工学报, 2024, 75(7): 2709-2722. |
[8] | 张广宇, 付然飞, 孙冰, 袁俊聪, 冯翔, 杨朝合, 徐伟. CO2-环氧丙烷合成碳酸丙烯酯:氢键供体效应研究[J]. 化工学报, 2024, 75(6): 2243-2251. |
[9] | 丁禹, 杨昌泽, 李军, 孙会东, 商辉. 原子尺度钼系加氢脱硫催化剂的研究进展与展望[J]. 化工学报, 2024, 75(5): 1735-1749. |
[10] | 马旭, 滕亚栋, 刘杰, 王宇璐, 张鹏, 张莲海, 姚万龙, 展静, 吴青柏. 喷雾法水合物法捕集分离烟道气中CO2[J]. 化工学报, 2024, 75(5): 2001-2016. |
[11] | 武颖韬, 费立涵, 孔祥东, 王帜, 汤成龙, 黄佐华. 咪唑二氰胺离子液体掺混糠醇的自燃及推进性能[J]. 化工学报, 2024, 75(5): 2017-2025. |
[12] | 蒋方涛, 钱刚, 周兴贵, 段学志, 张晶. 基于[bmim][BF4]相转移催化的氟代碳酸乙烯酯高效合成[J]. 化工学报, 2024, 75(4): 1543-1551. |
[13] | 王瑞瑞, 金颖, 刘玉梅, 李梦悦, 朱胜文, 闫瑞一, 刘瑞霞. 聚合离子液体设计及催化环己烷选择性氧化性能研究[J]. 化工学报, 2024, 75(4): 1552-1564. |
[14] | 肖拥君, 时兆翀, 万仁, 宋璠, 彭昌军, 刘洪来. 反向传播神经网络用于预测离子液体的自扩散系数[J]. 化工学报, 2024, 75(2): 429-438. |
[15] | 张欣, 薛宇, 马懿星, 王学谦, 王郎郎, 谢妮霏, 陈怡, 周晓霞. 电晕放电与介质阻挡放电净化氰化氢的机理[J]. 化工学报, 2024, 75(2): 675-684. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 484
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 193
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||