• •
张延焱1(
), 周婷玉1(
), 朱慧敏2, 李海洋3(
), 于慧鑫1(
), 张学军1
收稿日期:2025-05-22
修回日期:2025-08-12
出版日期:2025-08-13
通讯作者:
李海洋,于慧鑫
作者简介:张延焱(2000—),女,硕士研究生,1647650287@qq.com基金资助:
Yanyan ZHANG1(
), Tingyu ZHOU1(
), Huimin ZHU2, Haiyang LI3(
), Huixin YU1(
), Xuejun ZHANG1
Received:2025-05-22
Revised:2025-08-12
Online:2025-08-13
Contact:
Haiyang LI, Huixin YU
摘要:
挥发性有机化合物(VOCs)作为二次有机气溶胶和臭氧的前驱体,对人体和动物健康构成严重威胁。本研究以甲苯为目标污染物,选择铈氧化物作为催化剂,通过调整合成技术进而影响催化剂的物化性质,旨在开发出一种制备简便且高效的催化剂。运用多种表征技术对催化剂进行分析,结果表明,优化合成方法后所得催化剂(以下简称“CeO2-Y”,其中“Y”表示采用乙酸-乙二醇体系辅助水热法制备,具有疏松球形结构的样品)展现出理想的形貌结构和物理吸附属性。富含的Ce3+能够促进氧空位的形成,从而提高氧储存能力和氧迁移效率,并改善其在低温下的氧化还原性能。原位红外测试揭示了甲苯的反应路径,其中,苯环的裂解步骤是整个反应的决速步。本研究不仅为甲苯的催化氧化提供了高效催化剂,也为催化剂的合成方法、形貌调控及反应机制提供了理论和实验依据。
中图分类号:
张延焱, 周婷玉, 朱慧敏, 李海洋, 于慧鑫, 张学军. 基于氧空位调控的CeO2催化剂催化氧化甲苯性能[J]. 化工学报, DOI: 10.11949/0438-1157.20250565.
Yanyan ZHANG, Tingyu ZHOU, Huimin ZHU, Haiyang LI, Huixin YU, Xuejun ZHANG. Catalytic performance of CeO2 catalysts for the oxidation of toluene based on oxygen vacancy modulation[J]. CIESC Journal, DOI: 10.11949/0438-1157.20250565.
图1 所制备催化剂的(a) XRD图,(b) 氮气吸附与解吸等温曲线,以及(c) 孔径分布图
Fig. 1 (a) XRD pattern, (b) nitrogen adsorption and desorption isothermal curves, and (c) pore size distribution of the prepared catalysts
| Sample | Dp (nm) | SBET (m2 g-1) | Vp (cm3 g-1) |
|---|---|---|---|
| CeO2-Y | 8.2 | 62.4 | 0.30 |
| CeO2-X | 4.2 | 89.3 | 0.16 |
| CeO2-P | 5.8 | 90.4 | 0.18 |
| CeO2-H | 17.5 | 40.9 | 0.22 |
| CeO2-S | 12.4 | 33.3 | 0.08 |
表1 所制备催化剂的结构参数
Table 1 Structural parameters of the prepared catalysts
| Sample | Dp (nm) | SBET (m2 g-1) | Vp (cm3 g-1) |
|---|---|---|---|
| CeO2-Y | 8.2 | 62.4 | 0.30 |
| CeO2-X | 4.2 | 89.3 | 0.16 |
| CeO2-P | 5.8 | 90.4 | 0.18 |
| CeO2-H | 17.5 | 40.9 | 0.22 |
| CeO2-S | 12.4 | 33.3 | 0.08 |
图3 CeO2-Y (a-c),CeO2-X (d-f),CeO2-S (g-i),CeO2-P (j-l)和CeO2-H (m-o)的SEM、TEM和HRTEM图像
Fig. 3 SEM、TEM and HRTEM images of CeO2-Y (a-c), CeO2-X (d-f), CeO2-S(g-i), CeO2-P (j-l) and CeO2-H (m-o)
| 样品 | Ce3+/ (Ce3++Ce4+) % | Oβ/ (Oα+Oβ+Oγ) % | 氧脱附量 (μmol/g) | H2消耗量 (μmol/g) |
|---|---|---|---|---|
| CeO2-Y | 14.6 | 43.9 | 7.22 | 291.2 |
| CeO2-X | 11.1 | 27.0 | 6.41 | 213.5 |
| CeO2-S | 9.5 | 22.2 | 3.97 | 199.1 |
| CeO2-P | 10.1 | 23.7 | 4.53 | 199.3 |
| CeO2-H | 13.5 | 36.7 | 2.92 | 467.9 |
表2 所制备催化剂的XPS结果以及在O2-TPD和H2-TPR测试中涉及的参数
Table 2 XPS results and the parameters involved in the O2-TPD and H2-TPR tests of the prepared catalysts
| 样品 | Ce3+/ (Ce3++Ce4+) % | Oβ/ (Oα+Oβ+Oγ) % | 氧脱附量 (μmol/g) | H2消耗量 (μmol/g) |
|---|---|---|---|---|
| CeO2-Y | 14.6 | 43.9 | 7.22 | 291.2 |
| CeO2-X | 11.1 | 27.0 | 6.41 | 213.5 |
| CeO2-S | 9.5 | 22.2 | 3.97 | 199.1 |
| CeO2-P | 10.1 | 23.7 | 4.53 | 199.3 |
| CeO2-H | 13.5 | 36.7 | 2.92 | 467.9 |
图5 所制备催化剂的(a) O2-TPD谱图和(b) 100 - 900 oC范围的O2-TPD的放大谱图
Fig. 5 (a) O2-TPD and (b) amplified spectra of O2-TPD in the range of 100 - 900 oC for the prepared catalysts
图7 所制备催化剂的(a)甲苯降解效率,(b)SBET归一化,(c)Arrhenius图和(d)CeO2-Y在225 oC的稳定性和抗水性测试
Fig. 7 (a) Toluene degradation efficiency, (b) SBET normalization, (c) Arrhenius plots and (d) CeO2-Y stability and water resistance tests at 225 oC for the prepared catalysts
| 样品 | T50 (oC) | T90 (oC) | Ea (kJ/mol) |
|---|---|---|---|
| CeO2-Y | 203 | 225 | 63.68 |
| CeO2-X | 213 | 255 | 68.49 |
| CeO2-S | 224 | 276 | 97.81 |
| CeO2-P | 220 | 250 | 93.09 |
| CeO2-H | 305 | >320 | 77.75 |
表3 所制备催化剂的T50、T90及表观活化能
Table 3 T50, T90 and apparent activation energy of the prepared catalysts
| 样品 | T50 (oC) | T90 (oC) | Ea (kJ/mol) |
|---|---|---|---|
| CeO2-Y | 203 | 225 | 63.68 |
| CeO2-X | 213 | 255 | 68.49 |
| CeO2-S | 224 | 276 | 97.81 |
| CeO2-P | 220 | 250 | 93.09 |
| CeO2-H | 305 | >320 | 77.75 |
| 催化剂 | 甲苯浓度 (ppm) | 空速 (mL g-1 h-1) | T90 (℃) | 文献 |
|---|---|---|---|---|
| CeO2 | 1000 | 30 000 | 375 | [ |
| CeO2 | 1000 | 50 000 | 363 | [ |
| CeO2 | 500 | 60 000 | >300 | [ |
| CeO2 | 500 | 60 000 | 320 | [ |
| CeO2-P | 1000 | 20 000 | 280 | [ |
| CeO2-C | 1000 | 48 000 | 296 | [ |
| CeO2-RS | 1000 | 48 000 | 249 | [ |
| CeO2-Y | 500 | 60 000 | 225 | This work |
表4 近期报道的CeO2催化剂催化氧化甲苯性能
Table 4 Recently reported catalytic oxidation performance of CeO2 catalysts on toluene
| 催化剂 | 甲苯浓度 (ppm) | 空速 (mL g-1 h-1) | T90 (℃) | 文献 |
|---|---|---|---|---|
| CeO2 | 1000 | 30 000 | 375 | [ |
| CeO2 | 1000 | 50 000 | 363 | [ |
| CeO2 | 500 | 60 000 | >300 | [ |
| CeO2 | 500 | 60 000 | 320 | [ |
| CeO2-P | 1000 | 20 000 | 280 | [ |
| CeO2-C | 1000 | 48 000 | 296 | [ |
| CeO2-RS | 1000 | 48 000 | 249 | [ |
| CeO2-Y | 500 | 60 000 | 225 | This work |
| 催化剂 | 前驱体 | 合成方法 | 溶剂体系 | 添加剂 | 反应条件 | 形貌 | 晶面暴露 | Ov |
|---|---|---|---|---|---|---|---|---|
| CeO2-Y | (NH4)2 [Ce(NO3)6] | 水热法 | 乙酸 + 乙二醇 | 无 | 180 °C 10 h | 疏松球形 | (220) | 高 |
| CeO2-X | Ce(NO3)3· 6H2O | 水热法 | 乙腈 + 三乙二醇 | 无 | 200 °C 2 h | 实心球形 | (111) | 中 |
| CeO2-S | Ce(NO3)3· 6H2O | 水热法 | 甲醇 | 尿素 | 180 °C 12 h | 不规则颗粒 | (200) | 高 |
| CeO2-P | Ce(CH3COO3·4H2O | 沉淀法 | 乙醇 + 草酸 | 草酸 | 80 °C 0.5h | 块状片层 | (111) | 中 |
| CeO2-H | Ce(SO4)2· 4H2O | 一锅法 | 水 | 尿素 | 100 °C 12 h | 团聚颗粒 | (111) | 高 |
表5 不同合成方法对催化剂结构性能的影响
Table 5 Effect of different synthesis methods on the structural properties of catalysts
| 催化剂 | 前驱体 | 合成方法 | 溶剂体系 | 添加剂 | 反应条件 | 形貌 | 晶面暴露 | Ov |
|---|---|---|---|---|---|---|---|---|
| CeO2-Y | (NH4)2 [Ce(NO3)6] | 水热法 | 乙酸 + 乙二醇 | 无 | 180 °C 10 h | 疏松球形 | (220) | 高 |
| CeO2-X | Ce(NO3)3· 6H2O | 水热法 | 乙腈 + 三乙二醇 | 无 | 200 °C 2 h | 实心球形 | (111) | 中 |
| CeO2-S | Ce(NO3)3· 6H2O | 水热法 | 甲醇 | 尿素 | 180 °C 12 h | 不规则颗粒 | (200) | 高 |
| CeO2-P | Ce(CH3COO3·4H2O | 沉淀法 | 乙醇 + 草酸 | 草酸 | 80 °C 0.5h | 块状片层 | (111) | 中 |
| CeO2-H | Ce(SO4)2· 4H2O | 一锅法 | 水 | 尿素 | 100 °C 12 h | 团聚颗粒 | (111) | 高 |
| [1] | 刘宗耀, 曾永辉, 刘俊伟, 等. 挥发性有机物末端治理技术研究进展[J]. 现代化工, 2022, 42(3): 74-78, 84. |
| Liu Z Y, Zeng Y H, Liu J W, et al. Latest advances in terminal treatment technology for volatile organic compounds[J]. Modern Chemical Industry, 2022, 42(3): 74-78, 84. | |
| [2] | Chen X, Feng Y, Liu S C, et al. Engineering lattice oxygen mobility and optimizing reaction pathway via tuning Cu-Co interactions for efficient elimination of volatile organic compounds: a metal–organic framework template approach[J].Separation and Purification Technology, 2024, 338: 126594.[] |
| [3] | Chen X, Zhang Y Y, Dai W, et al. Engineering robust oxygen vacancies towards efficient toluene purification: coupling crystal facets with Mn–Ce solid solution[J]. Journal of Materials Chemistry A, 2025, 13(15): 10561-10580.[] |
| [4] | 孙敬方, 葛成艳, 安冬琦, 等. 稀土铈基催化材料氧空位的表征方法综述[J]. 化工学报, 2020, 71(8): 3403-3415. |
| Sun J F, Ge C Y, An D Q, et al. Review on characterization methods of oxygen vacancy in rare earth cerium-based catalysts[J]. CIESC Journal, 2020, 71(8): 3403-3415. | |
| [5] | Peng H G, Dong T, Yang S Y, et al. Intra-crystalline mesoporous zeolite encapsulation-derived thermally robust metal nanocatalyst in deep oxidation of light al kanes[J]. Nature Communications, 2022, 13: 295.[] |
| [6] | Sun Y F, Liu Q H, Gao S, et al. Pits confined in ultrathin cerium (IV) oxide for studying catalytic centers in carbon monoxide oxidation[J]. Nature Communications, 2013, 4: 2899.[] |
| [7] | Zhang X J, Li H Y, Song Z X, et al. In situ DRIFT spectroscopy study into the reaction mechanism of toluene over CeMo catalysts[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108895.[] |
| [8] | Feng Z T, Ren Q M, Peng R S, et al. Effect of CeO2 morphologies on toluene catalytic combustion[J]. Catalysis Today, 2019, 332: 177-182.[] |
| [9] | Su Z A, Yang W H, Wang C Z, et al. Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion[J]. Environmental Science & Technology, 2020, 54(19): 12684-12692.[] |
| [10] | Su Z A, Si W Z, Liu H, et al. Boosting the catalytic performance of CeO2 in toluene combustion via the Ce–Ce homogeneous interface[J]. Environmental Science & Technology, 2021, 55(18): 12630-12639.[] |
| [11] | Han W L, Zhao H J, Dong F, et al. Morphology-controlled synthesis of 3D, mesoporous, rosette-like CeCoO x catalysts by pyrolysis of Ce [Co(CN)6] and application for the catalytic combustion of toluene[J]. Nanoscale, 2018, 10(45): 21307-21319.[] |
| [12] | Zhang Y F, Tan X F, Han Z X, et al. Dual modification of cobalt silicate nanobelts by Co3O4 nanoparticles and phosphorization boosting oxygen evolution reaction properties[J]. Journal of Colloid and Interface Science, 2025, 679: 1036-1045.[] |
| [13] | Chen J, Chen X, Chen X, et al. Homogeneous introduction of CeOy into MnOx–based catalyst for oxidation of aromatic VOCs[J]. Applied Catalysis B: Environmental, 2018, 224: 825-835.[] |
| [14] | Ma L, Wang D S, Li J H, et al. Ag/CeO2 nanospheres: Efficient catalysts for formaldehyde oxidation[J]. Applied Catalysis B: Environmental, 2014, 148: 36-43.[] |
| [15] | Yang P, Yang S S, Shi Z N, et al. Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts[J]. Applied Catalysis B: Environmental, 2015, 162: 227-235.[] |
| [16] | Ma J, Lou Y, Cai Y F, et al. The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO2 [J]. Catalysis Science & Technology, 2018, 8(10): 2567-2577.[] |
| [17] | Zheng Y F, Zhao Q, Shan C P, et al. Enhanced acetone oxidation over the CeO2/Co3O4 catalyst derived from metal–organic frameworks[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28139-28147.[] |
| [18] | Cheng Z, Chen Z, Li J R, et al. Mesoporous silica-pillared clays supported nanosized Co3O4-CeO2 for catalytic combustion of toluene[J]. Applied Surface Science, 2018, 459: 32-39.[ https://doi.org/10.1016/j.apsusc.2018.07.203] |
| [19] | Li X X, Wang Y R, Chen D Y, et al. Elucidating the characteristics of palladium-anchored CeO2-modified hexagonal nanosheet Co3O4 catalysts for the complete oxidation of volatile organic compounds[J]. Industrial & Engineering Chemistry Research, 2022, 61(22): 7537-7546.[ https://doi.org/10.1021/acs.iecr.1c04823] |
| [20] | Taniguchi A, Kumabe Y, Kan K, et al. Ce3+-enriched spherical porous ceria with an enhanced oxygen storage capacity[J]. RSC Advances, 2021, 11(10): 5609-5617.[] |
| [21] | Torrente-Murciano L, Gilbank A, Puertolas B, et al. Shape-dependency activity of nanostructured CeO2 in the total oxidation of polycyclic aromatic hydrocarbons[J]. Applied Catalysis B: Environmental, 2013, 132/133: 116-122.[] |
| [22] | Zheng Y E, Li K Z, Wang H, et al. Structure dependence and reaction mechanism of CO oxidation: a model study on macroporous CeO2 and CeO2-ZrO2 catalysts[J]. Journal of Catalysis, 2016, 344: 365-377.[] |
| [23] | 朱红太, 宋丽云, 何洪, 等. CeTiOx脱硝催化剂的抗硫中毒性能[J]. 高等学校化学学报, 2019, 40(2): 350-357. |
| Zhu H T, Song L Y, He H, et al. Sulfur tolerance of the CeTiO x catalysts for selective catalytic reduction of NO with NH3 [J]. Chemical Journal of Chinese Universities, 2019, 40(2): 350-357. | |
| [24] | Xie S H, Deng J G, Zang S M, et al. Au–Pd/3DOM Co3O4: Highly active and stable nanocatalysts for toluene oxidation[J]. Journal of Catalysis, 2015, 322: 38-48.[] |
| [25] | Huang Q L, Chen X, Lv L, et al. Redox-oriented anchoring of CeO2 over nanostructured MnCo-spinel: Strong oxide-support interaction for enhanced toluene combustion[J]. Applied Catalysis B: Environment and Energy, 2025, 378: 125548.[] |
| [26] | Yu Y, Zhang M J, Shi H G, et al. Engineering surface and subsurface oxygen vacancies of Ce x Zr1- x O2 solid solution for enhanced total toluene oxidation[J]. Journal of Environmental Sciences, 2025, 158: 39-49.[] |
| [27] | Chen X, Geng J X, Feng Y, et al. Identifying the distinct influences and mechanisms of chelating agents on CoCe bimetallic oxides towards robust toluene purification[J]. Separation and Purification Technology, 2025, 367: 132861.[] |
| [28] | Jiang C L, Wang H, Wang Y Q, et al. Modifying defect States in CeO2 by Fe doping: a strategy for low-temperature catalytic oxidation of toluene with sunlight[J]. Journal of Hazardous Materials, 2020, 390: 122182.[] |
| [29] | Chen X, Chen X, Yu E Q, et al. In situ pyrolysis of Ce-MOF to prepare CeO2 catalyst with obviously improved catalytic performance for toluene combustion[J]. Chemical Engineering Journal, 2018, 344: 469-479.[] |
| [30] | Feng Z T, Zhang M Y, Ren Q M, et al. Design of 3-dimensionally self-assembled CeO2 hierarchical nanosphere as high efficiency catalysts for toluene oxidation[J]. Chemical Engineering Journal, 2019, 369: 18-25.[] |
| [31] | Dong C, Qu Z P, Qin Y, et al. Revealing the highly catalytic performance of spinel CoMn2O4 for toluene oxidation: involvement and replenishment of oxygen species using in situ designed-TP techniques[J]. ACS Catalysis, 2019, 9(8): 6698-6710.[] |
| [32] | Sun H, Liu Z G, Chen S, et al. The role of lattice oxygen on the activity and selectivity of the OMS-2 catalyst for the total oxidation of toluene[J]. Chemical Engineering Journal, 2015, 270: 58-65.[] |
| [33] | Li J, Na H B, Zeng X L, et al. In situ DRIFTS investigation for the oxidation of toluene by ozone over Mn/HZSM-5, Ag/HZSM-5 and Mn–Ag/HZSM-5 catalysts[J]. Applied Surface Science, 2014, 311: 690-696.[] |
| [1] | 裴星亮, 叶翠平, 裴赢丽, 李文英. 碱改性MIL-53(Cr)选择性吸附分离二甲苯异构体[J]. 化工学报, 2025, 76(S1): 258-267. |
| [2] | 王一非, 任婧杰, 毕明树, 叶昊天. 基于本质安全与经济性的环己烷氧化工艺参数多目标优化研究[J]. 化工学报, 2025, 76(6): 2722-2732. |
| [3] | 刘晗, 崔家馨, 殷梦凡, 郑涛, 张睿, 孟祥海, 刘植昌, 刘海燕, 徐春明. CuAlCl4-二甲苯络合物晶体结构及二元固液相平衡测定[J]. 化工学报, 2025, 76(5): 2241-2250. |
| [4] | 刘莹, 郑芳, 杨启炜, 张治国, 任其龙, 鲍宗必. 二甲苯异构体吸附分离研究进展[J]. 化工学报, 2024, 75(4): 1081-1095. |
| [5] | 陈饶, 赵鑫, 陈戴欣, 姜圣坤, 廉应江, 王金波, 杨梅, 陈光文. 微反应器内甲苯连续二硝化制备二硝基甲苯[J]. 化工学报, 2024, 75(3): 867-876. |
| [6] | 涂玉明, 邵高燕, 陈健杰, 刘凤, 田世超, 周智勇, 任钟旗. 钙基催化剂的设计合成及应用研究进展[J]. 化工学报, 2023, 74(7): 2717-2734. |
| [7] | 李盼, 马俊洋, 陈志豪, 王丽, 郭耘. Ru/α-MnO2催化剂形貌对NH3-SCO反应性能的影响[J]. 化工学报, 2023, 74(7): 2908-2918. |
| [8] | 韩奎奎, 谭湘龙, 李金芝, 杨婷, 张春, 张永汾, 刘洪全, 于中伟, 顾学红. 四通道中空纤维MFI分子筛膜用于二甲苯异构体分离[J]. 化工学报, 2023, 74(6): 2468-2476. |
| [9] | 王辰, 史秀锋, 武鲜凤, 魏方佳, 张昊虹, 车寅, 吴旭. 氧化还原法制备Mn3O4催化剂及其甲苯催化氧化性能与机理研究[J]. 化工学报, 2023, 74(6): 2447-2457. |
| [10] | 蹇建, 张嘉明, 佘祥, 周虎, 游奎一, 罗和安. V4+和V5+比例对钒磷氧催化NO2氧化环己烷性能的影响[J]. 化工学报, 2023, 74(4): 1570-1577. |
| [11] | 赵涛岩, 曹江涛, 李平, 冯琳, 商瑀. 区间二型模糊免疫PID在环己烷无催化氧化温度控制系统中的应用[J]. 化工学报, 2022, 73(7): 3166-3173. |
| [12] | 钱庆玲, 朱晴, 杨正金, 徐铜文. 微孔Noria聚合物用于二甲苯异构体吸附分离研究[J]. 化工学报, 2022, 73(12): 5438-5448. |
| [13] | 王之豪, 宋欣, 殷亚然, 张先明. 微流控纺丝中凝胶速率对螺旋纤维形貌的调控机制[J]. 化工学报, 2022, 73(11): 5158-5166. |
| [14] | 徐健元, 吴艳阳, 徐菊美, 彭阳峰. 2 kPa下均三甲苯-偏三甲苯与均三甲苯-邻甲乙苯体系二元汽液相平衡数据研究及精馏模拟[J]. 化工学报, 2021, 72(9): 4504-4510. |
| [15] | 叶凯, 刘香华, 姜月, 于颖, 赵亚飞, 庄烨, 郑进保, 陈秉辉. 低温等离子体协同CeO2/13X催化降解甲苯[J]. 化工学报, 2021, 72(7): 3706-3715. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备 11010102001995号