化工学报 ›› 2015, Vol. 66 ›› Issue (8): 2895-2902.DOI: 10.11949/j.issn.0438-1157.20150670
卢尚青, 吴素芳
收稿日期:
2015-05-22
修回日期:
2015-05-31
出版日期:
2015-08-05
发布日期:
2015-08-05
通讯作者:
吴素芳
基金资助:
国家自然科学基金项目(21276234)。
LU Shangqing, WU Sufang
Received:
2015-05-22
Revised:
2015-05-31
Online:
2015-08-05
Published:
2015-08-05
Supported by:
supported by the National Natural Science Foundation of China (21276234).
摘要:
CaCO3热分解产生CaO与CO2的反应,是钙循环过程中CaCO3再生的重要反应。钙循环过程在烟气脱碳、反应吸附强化甲烷蒸气重整制氢以及太阳热能储存等过程中都有重要应用。评价CaCO3热分解的重要性能是分解温度和分解速率。本文从CaCO3分解机理、热力学和反应动力学方面,分析了颗粒粒径、结构和组成以及加热速率、分解气氛和分解压力等变量对CaCO3分解温度和分解速率的影响,为工业应用时降低CaCO3分解温度、提高分解速率、减少分解能耗的研究提供了参考。
中图分类号:
卢尚青, 吴素芳. 碳酸钙热分解进展[J]. 化工学报, 2015, 66(8): 2895-2902.
LU Shangqing, WU Sufang. Advances in calcium carbonate thermal decomposition[J]. CIESC Journal, 2015, 66(8): 2895-2902.
[1] | Rogelj J, Meinshausen M, Knutti R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates [J]. Nature Climate Change, 2012, 2(4): 248-253. |
[2] | Intergovernmental Panel on Climate Change. Climate change 2014: Mitigation of Climate Change[R]. New York: IPCC, 2014. |
[3] | Mofarahi M, Roohi P, Farshadpoor F. Study of CaO sorbent for CO2 capture from flue gases//9th International Conference on Chemical and Process Engineering. Chemical Engineering Transactions[C]. Bushehr: Persian Gulf University, 2009:403-408. |
[4] | Wu S F, Zhu Y Q. Behavior of CaTiO3/nano-CaO as a CO2 reactive adsorbent [J]. Ind. Eng. Chem. Res., 2010, 49(6): 2701-2706. |
[5] | Rodríguez N, Alonso M, Abanades J C. Average activity of CaO particles in a calcium looping system [J]. Chem. Eng. J., 2010, 156(2): 388-394. |
[6] | Han C, Harrison D P. Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen [J]. Chem. Eng. Sci., 1994, 49(24): 5875-5883. |
[7] | Wu Sufang, Li Lianbao, Zhu Yanqing, Wang Xieqing. A micro-sphere catalyst complex with nano CaCO3 precursor for hydrogen production used in ReSER process [J]. Engineering Sciences, 2010, 8(1):22-26. |
[8] | Abanades J C, Rubin E S, Anthony E J. Sorbent cost and performance in CO2 capture systems [J]. Ind. Eng. Chem. Res., 2004, 43(13): 3462-3466. |
[9] | Lu D Y, Hughes R W, Anthony E J, Manovic V. Sintering and reactivity of caco3-based sorbents for in situ CO2 capture in fluidized beds under realistic calcination conditions [J]. J. Environ. Eng., 2009, 135(6): 404-410. |
[10] | Manovic V, Charland J, Blamey J, Fennell P S, Lu D Y, Anthony E J. Influence of calcination conditions on carrying capacity of CaO-based sorbent in CO2 looping cycles [J]. Fuel, 2009, 88(10): 1893-1900. |
[11] | Alvarez D, Pena M, Borrego A G. Behavior of different calcium-based sorbents in a calcination/carbonation cycle for CO2 capture [J]. Energy Fuels, 2007, 21(3): 1534-1542. |
[12] | Lu H, Reddy E P, Smirniotis P G. Calcium oxide based sorbents for capture of carbon dioxide at high temperatures [J]. Ind. Eng. Chem. Res., 2006, 45(11): 3944-3949. |
[13] | Florin N H, Harris A T. Enhanced hydrogen production from biomass with in situ carbon dioxide capture using calcium oxide sorbents [J]. Chem. Eng. Sci., 2008, 63(2): 287-316. |
[14] | Su Mianzeng(苏勉曾).Solid Chemistry Introduction(固体化学导论)[M]. Beijing: Beijing University Press, 1986. |
[15] | Lai Weipeng (来蔚鹏), Xue Yongqiang (薛永强), Lian Peng (廉鹏), Ge Zhongxue (葛忠学), Wang Bozhou (王伯周), Zhang Zhizhong (张志忠). Effect of particle size on properties of chemical reaction thermodynamics of nanosystems [J]. Journal of Physical Chemistry (物理化学学报), 2007, 23(4): 508-512. |
[16] | Cui Z, Xue Y, Xiao L, Wang Tingting. Effect of particle size on activation energy for thermal decomposition of nano-CaCO3 [J]. J. Comput. Theor. Nanos., 2013, 10(3): 569-572. |
[17] | Wang S, Cui Z, Xia X, Xue Y. Size-dependent decomposition temperature of nanoparticles: a theoretical and experimental study [J]. Phys. B: Condens. Matter., 2014, 454: 175-178. |
[18] | Yue Linhai (岳林海), Shui Miao (水淼), Xu Zhude(徐铸德). Decomposition kinetics of nano-particle calcite [J]. Chinese Journal of Inorganic Chemistry (无机化学学报), 1999, 15(2):225-228. |
[19] | Yue Linhai (岳林海), Shui Miao (水淼), Xu Zhude(徐铸德). The crystal structure of ultra-fine CaCO3 and its thermal decomposition [J]. Journal of Chemical Engineering of Chinese Universities (高校化学工程学报), 2000, 21(10): 1555-1559. |
[20] | Wu S F, Li Q H, Kim J N, Yi, Kwang B. Properties of a nano CaO/Al2O3 CO2 sorbent[J]. Ind. Eng. Chem. Res., 2008, 47(1): 180-184. |
[21] | Liu R, Chen J, Guo F, Yun Jimmy, Shen Z. Kinetics and mechanism of decomposition of nano-sized calcium carbonate under non-isothermal condition [J]. Chin. J. Chem. Eng., 2003, 11(3): 302-306. |
[22] | Salvador A R, Calvo E G, Aparicio C B. Effects of sample weight, particle size, purge gas and crystalline structure on the observed kinetic parameters of calcium carbonate decomposition [J]. Thermochim. Acta., 1989, 143: 339-345. |
[23] | Borgwardt R H. Calcination kinetics and surface area of dispersed limestone particles [J]. AIChE J., 1985, 31(1): 103-111. |
[24] | Criado J M, Ortega A. A study of the influence of particle size on the thermal decomposition of CaCO3 by means of constant rate thermal analysis [J]. Thermochim. Acta., 1992, 195: 163-167. |
[25] | Zhong Zhaoping (仲兆平), Marnie Telfer, Zhang Mingyao (章名耀), Li Daji (李大骥), Xu Yuenian (徐跃年), Jin Baosheng (金保升), Lan Jixiang (兰计香), Zhang Dongke (张东柯). Experimental study on pyrolysis of caroline linestone [J]. Journal of Combustion Science and Technology (燃烧科学与技术), 2001, 7(2): 110-114. |
[26] | Yan C, Grace J R, Lim C J. Effects of rapid calcination on properties of calcium-based sorbents [J]. Fuel Process. Technol., 2010, 91(11): 1678-1686. |
[27] | Campbell F R, Hills A, Paulin A. Transport properties of porous lime and their influence on the decomposition of porous compacts of calcium carbonate [J]. Chem. Eng. Sci., 1970, 25(6): 929-942. |
[28] | Huang J, Daugherty K E. Lithium carbonate enhancement of the calcination of calcium carbonate: proposed extended-shell model [J]. Thermochim. Acta., 1987, 118: 135-141. |
[29] | Huang J, Daugherty K E. Inhibition of the calcination of calcium carbonate [J]. Thermochim. Acta., 1988, 130: 173-176. |
[30] | Yu Zhaonan(余兆南). The experimental study of CaCO3 decomposition [J]. Journal of Thermal Energy and Power Engineering (热能动力工程), 1997, 12(4): 278-280. |
[31] | Hou Guihua (侯贵华), Shen Xiaodong (沈晓冬), Xu Zhongzi (许仲梓). Effect of copper oxide on decomposition kinetics for calcium carbonate [J]. Journal of the Chinese Ceramic Society (硅酸盐学报), 2005, 33(1): 109-114. |
[32] | Braileanu A, Zaharescu M, Cri?an D, F?tu D, Segal E, Danciulescu C. Kinetics of the decomposition of calcium carbonate in the presence of Bi2O3[J]. J. Therm. Anal., 1996, 47(2): 569-575. |
[33] | Calvo E G, Arranz M A, Leton P. Effects of impurities in the kinetics of calcite decomposition [J]. Thermochim. Acta., 1990, 170: 7-11. |
[34] | Zhang Huizhu (张惠珠), Jin Dalai (金达莱), Yue Linhai (岳林海). Study on the non-isothermal decomposition kinetics of AlOOH coated calcium carbonate [J]. Journal of Zhejiang University:Science Edition (浙江大学学报:理学版), 2008, (4): 16. |
[35] | Shi Qi (师琦), Wu Sufang (吴素芳). Properties of SiO2 coated nano SiO2/CaCO3 sorbents by precipitation method [J]. CIESC Journal (化工学报), 2009, 60(2): 507-513. |
[36] | Yue Linhai (岳林海), Cai Juxiang (蔡菊香), Hua Yimiao (华益苗). Mechanism and structure of SiO2-coated CaCO3 superfine particles [J]. Journal of Zhejiang University: Science Edition(浙江大学学报:理学版), 2002, 29(1): 67-72. |
[37] | Wang Chengyu (王成毓). Biomimetic synthesis and character of functional nano-CaCO3[D]. Changchun: Jilin University, 2007. |
[38] | Sanders J P, Gallagher P K. Kinetic analyses using simultaneous TG/DSC measurements (Ⅰ): Decomposition of calcium carbonate in argon [J]. Thermochim Acta., 2002, 388(1/2): 115-128. |
[39] | Galan I, Glasser F P, Andrade C. Calcium carbonate decomposition [J]. J. Therm. Anal Calorim., 2013, 111(2): 1197-1202. |
[40] | Avila I, Crnkovic P M, Milioli F E, Luo Kai H. Thermal decomposition kinetics of Brazilian limestones: effect of CO2 partial pressure [J]. Environ. Technol.. 2012, 33(10): 1175-1182. |
[41] | Yin J, Kang X, Qin C, Feng B, Veeraragavan A, Saulov D, et al. Modeling of CaCO3 decomposition under CO2/H2O atmosphere in calcium looping processes [J]. Fuel Process. Technol., 2014, 125: 125-138. |
[42] | L'vov B V. Kinetic parameters of CaCO3 decomposition in vacuum, air and CO2 calculated theoretically by means of the thermochemical approach[J]. React. Kinet. Mech. Cat., 2015, 114(1): 31-40. |
[43] | Li Zhenshan (李振山), Fang Fan (房凡), Cai Ningsheng (蔡宁生). Simulation of CaCO3 calcination under high CO2 concentration [J]. Journal of Engineering for Thermal Energy and Power (热能动力工程), 2007, (6): 642-646. |
[44] | Wang Y, Thomson W J. The effects of steam and carbon dioxide on calcite decomposition using dynamic X-ray diffraction [J]. Chem. Eng. Sci., 1995, 50(9): 1373-1382. |
[45] | L'vov B V. Mechanism of thermal decomposition of alkaline-earth carbonates [J]. Thermochim Acta., 1997, 303(2): 161-170. |
[46] | Broda M, Pacciani R, Müller C R. CO2 Capture via Cyclic Calcination and Carbonation Reactions//Porous Materials for Carbon Dioxide Capture [M]. Springer, 2014: 181-222. |
[47] | Stanmore B R, Gilot P. Review—calcination and carbonation of limestone during thermal cycling for CO2 sequestration [J]. Fuel Process. Technol., 2005, 86(16): 1707-1743. |
[48] | Feng Yun (冯云), Chen Yaxin (陈延信). Development of research on calcium carbonate for decomposed kinetics [J]. Bulletin of the Chinese Ceramic Society (硅酸盐通报), 2006, (3): 140-145. |
[49] | Martinez I, Grasa G, Murillo R, Arias B, Abanades J C. Kinetics of calcination of partially carbonated particles in a Ca-looping system for CO2 capture [J]. Energy Fuels, 2012, 26(2): 1432-1440. |
[50] | Cremer E, Nitsch W. The function of CO2 pressure on CaCO3 decomposition rate [J]. Z. Elektrochem., 1962, 66(8/9): 697-702. |
[51] | Sharp J H, Wentworth S A. Kinetic analysis of thermogravimetric data [J]. Analytical Chemistry, 1969, 41(14): 2060-2062. |
[52] | Xie Jianyun (谢建云), Fu Weibiao (傅维标). Uniform mathematical model for limestone calcination [J]. Journal of Combustion Science and Technology (燃烧科学与技术), 2002, 8(3): 270-274. |
[53] | Ning Jingtao (宁静涛), Zhong Beijing (钟北京), Fu Weibiao (傅维标). Study on the calcination of fine limestone powder at high temperature [J]. Journal of Combustion Science and Technology (燃烧科学与技术), 2003, 9(3): 205-208. |
[54] | Ar I, Do?u G. Calcination kinetics of high purity limestones [J]. Chem. Eng. Sci., 2001, 83(2): 131-137. |
[55] | Milne C R, Silcox G D, Pershing D W, Kirchgessner, David A. Calcination and sintering models for application to high-temperature, short-time sulfation of calcium-based sorbents [J]. Ind. Eng. Chem. Res., 1990, 29(2): 139-149. |
[56] | Shi Qi (师琦), Wu Sufang (吴素芳), Jiang Mingzhe (蒋明哲), Li Qinghui (李清辉). Reactive sorption-decomposition kinetics of nano Ca-based CO2 sorbents [J]. CIESC Journal (化工学报), 2009, 60(3): 641-648. |
[57] | Dennis J S, Hayhurst A N. The effect of CO2 on the kinetics and extent of calcination of limestone and dolomite particles in fluidised beds [J]. Chem. Eng. Sci., 1987, 42(10): 2361-2372. |
[1] | 杨欣, 王文, 徐凯, 马凡华. 高压氢气加注过程中温度特征仿真分析[J]. 化工学报, 2023, 74(S1): 280-286. |
[2] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[3] | 程成, 段钟弟, 孙浩然, 胡海涛, 薛鸿祥. 表面微结构对析晶沉积特性影响的格子Boltzmann模拟[J]. 化工学报, 2023, 74(S1): 74-86. |
[4] | 张化福, 童莉葛, 张振涛, 杨俊玲, 王立, 张俊浩. 机械蒸汽压缩蒸发技术研究现状与发展趋势[J]. 化工学报, 2023, 74(S1): 8-24. |
[5] | 胡建波, 刘洪超, 胡齐, 黄美英, 宋先雨, 赵双良. 有机笼跨细胞膜易位行为的分子动力学模拟研究[J]. 化工学报, 2023, 74(9): 3756-3765. |
[6] | 张曼铮, 肖猛, 闫沛伟, 苗政, 徐进良, 纪献兵. 危废焚烧处理耦合有机朗肯循环系统工质筛选与热力学优化[J]. 化工学报, 2023, 74(8): 3502-3512. |
[7] | 段重达, 姚小伟, 朱家华, 孙静, 胡南, 李广悦. 环境因素对克雷白氏杆菌诱导碳酸钙沉淀的影响[J]. 化工学报, 2023, 74(8): 3543-3553. |
[8] | 汪林正, 陆俞冰, 张睿智, 罗永浩. 基于分子动力学模拟的VOCs热氧化特性分析[J]. 化工学报, 2023, 74(8): 3242-3255. |
[9] | 张蒙蒙, 颜冬, 沈永峰, 李文翠. 电解液类型对双离子电池阴阳离子储存行为的影响[J]. 化工学报, 2023, 74(7): 3116-3126. |
[10] | 刘春雨, 周桓宇, 马跃, 岳长涛. CaO调质含油污泥干燥特性及数学模型[J]. 化工学报, 2023, 74(7): 3018-3027. |
[11] | 卫雪岩, 钱勇. 微米级铁粉燃料中低温氧化反应特性及其动力学研究[J]. 化工学报, 2023, 74(6): 2624-2638. |
[12] | 姚晓宇, 沈俊, 李健, 李振兴, 康慧芳, 唐博, 董学强, 公茂琼. 流体气液临界参数测量方法研究进展[J]. 化工学报, 2023, 74(5): 1847-1861. |
[13] | 陈科, 杜理, 曾英, 任思颖, 于旭东. 四元体系LiCl+MgCl2+CaCl2+H2O 323.2 K相平衡研究及计算[J]. 化工学报, 2023, 74(5): 1896-1903. |
[14] | 毛元敬, 杨智, 莫松平, 郭浩, 陈颖, 罗向龙, 陈健勇, 梁颖宗. C6~C10烷醇的SAFT-VR Mie状态方程参数回归及其热物性研究[J]. 化工学报, 2023, 74(3): 1033-1041. |
[15] | 禹进, 余彬彬, 蒋新生. 一种基于虚拟组分的燃烧调控化学作用量化及分析方法研究[J]. 化工学报, 2023, 74(3): 1303-1312. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||