化工学报 ›› 2015, Vol. 66 ›› Issue (8): 2888-2894.DOI: 10.11949/j.issn.0438-1157.20150738
何大方1, 吴健1, 刘战剑2, 沈丽明1, 汪怀远2, 暴宁钟1
收稿日期:
2015-05-27
修回日期:
2015-06-04
出版日期:
2015-08-05
发布日期:
2015-08-05
通讯作者:
沈丽明,暴宁钟
基金资助:
国家自然科学基金项目(51425202,51202110);江苏省自然科学基金项目(BK2012426, BK2012041);江苏省高校优势学科建设工程资助项目。
HE Dafang1, WU Jian1, LIU Zhanjian2, SHEN Liming1, WANG Huaiyuan2, BAO Ningzhong1
Received:
2015-05-27
Revised:
2015-06-04
Online:
2015-08-05
Published:
2015-08-05
Supported by:
supported by the National Natural Science Foundation of China (51425202, 51202110), the Natural Science Foundation of Jiangsu Province (BK2012426, BK2012041) and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
摘要:
二维石墨烯具有卓越的光、电、热和力学等性能,在众多传统产业和战略性新兴产业中有巨大的应用前景,被誉为下一代关键基础材料。然而,石墨烯产业化及应用的瓶颈性问题是如何高效率、规模化、低成本和环境友好地制备高质量石墨烯产品。本综述系统地比较了现有石墨烯制备方法的优缺点,结合不同应用领域的特殊要求,阐明了材料化学工程的放大理论和方法是解决石墨烯大规模制备和应用瓶颈性问题的重要保障。
中图分类号:
何大方, 吴健, 刘战剑, 沈丽明, 汪怀远, 暴宁钟. 面向应用的石墨烯制备研究进展[J]. 化工学报, 2015, 66(8): 2888-2894.
HE Dafang, WU Jian, LIU Zhanjian, SHEN Liming, WANG Huaiyuan, BAO Ningzhong. Recent advances in preparation of graphene for applications[J]. CIESC Journal, 2015, 66(8): 2888-2894.
[1] | Geim A K, Novoselov K S. The rise of graphene [J]. Nat. Mater., 2007, 6(3): 183-191. |
[2] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438(7065): 197-200. |
[3] | Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K. Two-dimensional atomic crystals [J]. Proc. Natl. Acad. Sci. USA, 2005, 102(30): 10451-10453. |
[4] | Katsnelson M I, Novoselov K S. Graphene: new bridge between condensed matter physics and quantum electrodynamics [J]. Solid State Commun., 2007, 143(1/2): 3-13. |
[5] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Crigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696): 666-669. |
[6] | Ruoff R S. Calling all chemists [J]. Nat Nanotechnol., 2008, 3(1): 10-11. |
[7] | Geim A K. Graphene: status and prospects [J]. Science, 2009, 324(5934): 1530-1534. |
[8] | Brumfiel G. Graphene gets ready for the big time [J]. Nature, 2009, 458(7237): 390-391. |
[9] | Zhang Y B, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature, 2005, 438(7065): 201-204. |
[10] | Chae H K, Siberio-Pérez D Y, Kim J, Go Y, Eddaoudi M, Matzger A J, O'Keeffe M, Yaghi O M. A route to high surface area, porosity and inclusion of large molecules in crystals [J]. Nature, 2004, 427(6974): 523-527. |
[11] | Balandin A A, Ghosh S, Bao W Z, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene [J]. Nano Lett., 2008, 8(3): 902-907. |
[12] | Chen S S, Wu Q Z, Mishra C, Kang J Y, Zhang H J, Cho K J, Cai W W, Balandin A A, Ruoff R S. Thermal conductivity of isotopically modified graphene [J]. Nat. Mater., 2012, 11(3): 203-207. |
[13] | Lee C, Wei X D, Kysar J W, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science, 2008, 321(5887): 385-388. |
[14] | van den Brink J. Graphene-from strength to strength [J]. Nat. Nanotechnol., 2007, 2(4): 199-201. |
[15] | Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene [J]. Chem. Rev., 2010, 110(1): 132-145. |
[16] | Pan Y, Zhang H G, Shi D X, Sun J T, Du S X, Liu F, Gao H J. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001) [J]. Adv. Mater., 2009, 21( 27 ): 2777-2780. |
[17] | Sutter P W, Flege J I, Sutter E A. Epitaxial graphene on ruthenium [J]. Nat. Mater., 2008, 7(5): 406-411. |
[18] | Park S, Ruoff R S. Chemical methods for the production of graphenes [J]. Nat. Nanotechnol., 2009, 4(4): 217-224. |
[19] | Park K H, Kim B H, Song S H, Kwon J Y, Kong B S, Kang K, Jeon S. Exfoliation of non-oxidized graphene flakes for scalable conductive film [J]. Nano Lett., 2012, 12(6): 2871-2876. |
[20] | Geng X M, Guo Y F, Li D F, Li W W, Zhu C, Wei X F, Chen M L, Gao S, Qiu S Q, Gong Y P, Wu L Q, Long M S, Sun M T, Pan G B, Liu L W. Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene [J]. Scientific Reports, 2013, 3: 1134-1139. |
[21] | Hernandez Y, Nicolosi V, Lotya M, Blighe F M, Sun Z, De S, McGovern I T, Holland B, Byrne M, Gun'Ko Y K, Boland J J, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari A C, Coleman J N. High-yield production of graphene by liquid-phase exfoliation of graphite [J]. Nat. Nanotechnol., 2008, 3(9): 563-569. |
[22] | Pykal M, Safarova K, Siskova K M, Jure?ka P, Bourlinos A B, Zbo?il R, Otyepka M. Lipid enhanced exfoliation for production of graphene nanosheets [J]. J. Phys. Chem. C, 2013, 117(22): 11800-11803. |
[23] | Paton K R, Varrla E, Backes C, Smith R J, Khan U, O'Neill A O, Boland C, Lotya M, Istrate O M, King P, Higgins T, Barwich S, May P, Puczkarski P, Ahmed I, Moebius M, Pettersson H, Long E, Coelho J, O'Brien S E, MsGrire E K, Sanchez B M, Duesberg G S, McEvoy N, Pennycook T J, Downing C, Crossley A, Nicolosi V, Coleman J N. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids [J]. Nat. Mater., 2014, 13(6): 624-630. |
[24] | Kim K S, Zhao Y, Jang H K, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H. Large-scale pattern growth of graphene films for stretchable transparent electrodes [J]. Nature, 2009, 457(7230): 706-710. |
[25] | Hao Y, Bharathi M S, Wang L, Liu Y G, Chen H, Nie S, Wang X H, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson C W, Tutuc E, Yakobson B I, McCarty K F, Zhang Y W, Kim P, Hone J, Colombo L, Ruoff R S. The role of surface oxygen in the growth of large single-crystal grapheme on copper [J]. Science, 2013, 342(6): 720-723. |
[26] | Hummers W S, Offeman R E. Preparation of graphitic oxide [J]. J. Am. Chem. Soc., 1958, 80: 1339. |
[27] | Stankovich S, Dikin D A, Piner R D, Kohlhaas K A, Kleinhammes A, Jia Y Y, Wu Y, Nguyen S T, Ruoff R S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide [J]. Carbon, 2007, 45 (7): 1558-1565. |
[28] | He D F, Shen L M, Zhang X Y, Bao N Z, Kung H H. An efficient and eco-friendly solution-chemical route for preparation of ultrastable reduced graphene oxide suspensions [J]. AIChE J., 2014, 60(8): 2757-2764. |
[29] | Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Precise and ultrafast molecular sieving through graphene oxide membranes [J]. Science, 2014, 343(6172): 752-754. |
[30] | Liu Y L, Mi B X. Effects of organic macromolecular conditioning on gypsum scaling of forward osmosis membranes [J]. J. Membrane Sci., 2014, 450: 153-161. |
[31] | Zhu Y W, Murali S T, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Graphene and graphene oxide: synthesis, properties, and applications [J]. Adv. Mater., 2010, 22(46): 5226-5226. |
[32] | Yang N L, Zhai J, Wang D, Chen Y S, Jiang L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells [J]. ACS Nano, 2010, 4(2): 887-894. |
[33] | Velten J A, Carretero-González J, Castillo-Martínez E, Bykova J, Cook A, Baughman R, Zakhidov A. Photoinduced optical transparency in dye-sensitized solar cells containing graphene nanoribbons [J]. J. Phys. Chem. C, 2011, 115(50): 25125-25131. |
[34] | Zhao X, Hayner C M, Kung M C, Kung H H. Photothermal-assisted fabrication of iron fluoride-graphene composite paper cathodes for high-energy lithium-ion batteries [J].Chem. Commun.,2012, 48(79): 9909-9911. |
[35] | Lee J K, Smith K B, Hayner C M, Kung H H. Silicon nanoparticles-graphene paper composites for Li ion battery anodes [J]. Chem. Commun., 2010, 46(12): 2025-2027. |
[36] | Zhao X, Hayner C M, Kung M C, Kung H H. In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries [J]. Adv. Energy Mater., 2011, 1(6): 1079-1084. |
[37] | Xu Y X, Wu Q, Sun Y Q, Bai H, Shi G Y. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels [J]. ACS Nano, 2010, 4(12): 7358-7362. |
[38] | Sheng K X, Xu Y X, Li C, Shi G Q. High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide [J]. New Carbon Mater., 2011, 26(1): 9-15. |
[39] | Lin Y M, Valdes-Garcia A, Han S J, Farmer D B, Meric I, Sun Y N, Wu Y Q, Dimitrakopoulos C, Grill A, Avouris P, Jenkins K A. Wafer-scale graphene integrated circuit [J]. Science, 2011, 332(6035): 1294-1297. |
[40] | Ma J, Meng Q S, Michelmore A, Kawashima N, Izzuddin Z, Bengtsson C, Kuan H C. Covalently bonded interfaces for polymer/graphene composites [J]. J. Mater. Chem. A, 2013, 1 (13): 4255-4264. |
[41] | Kandare E, Khatibi A A, Yoo S H, Wang R Y, Ma J, Olivier P, Gleizes N, Wang C H. Improving the through-thickness thermal and electrical conductivity of carbon fibre/epoxy laminates by exploiting synergy between graphene and silver nano-inclusions [J]. Compos Part A-Appl S., 2015, 69: 72-82. |
[42] | Prasai D, Tuberquia J C, Harl R R, Jennings G K, Bolotin K. Graphene: corrosion-inhibiting coating [J]. ACS Nano, 2012, 6(2): 1102-1108. |
[43] | Pan Bingli(潘炳力), Xing Yali(邢雅丽), Liu Jingchao(刘敬超), et al. Tribological behavior of PPS coating modified by graphene [J]. Tribology(摩擦学学报), 2011, 31(2): 150-155. |
[44] | Yu A P, Ramesh P, Sun X B, Bekyarova E, Itkis M E, Haddon R C. Enhanced thermal conductivity in a hybrid graphite nanoplatelet- carbon nanotube filler for epoxy composites [J]. Adv. Mater., 2008, 20(24): 4740-4744. |
[45] | Lee W K, Haydell M, Robinson J T, Laracuente A R, Cimpoiasu E, King W P, Sheehan P E. Nanoscale reduction of graphene fluoride via thermochemical nanolithography [J]. ACS Nano, 2013, 7(7): 6219-6224. |
[46] | Mooson Kwauk(郭慕孙). Process engineering [J]. The Chinese Journal of Process Engineering(过程工程学报), 2001, 1(1): 2-7. |
[47] | Li Hongzhong(李洪钟). Focus attention on structure, interface and multi-scale issues to open up new mileage of chemical engineering [J]. The Chinese Journal of Process Engineering(过程工程学报), 2006, 6(6): 991-996. |
[48] | Li Jinghai(李静海), Hu Ying(胡英), Chuan Yuan(袁权). Mesoscience: exploring old problems from a new angle [J]. Scientia Sinica Chimica(中国科学化学), 2014, 44(3): 277-281. |
[49] | Xu Nanping(徐南平), Shi Jun(时钧). Progress in material-oriented chemical engineering of China [J]. Journal of Chemical Industry and Engineering(China) (化工学报), 2003, 54(4): 423-426. |
[50] | Jin Wanqin(金万勤), Lu Xiaohua(陆小华), Xu Nanping(徐南平). Advances in Materials-Oriented Chemical Engineering(材料化学工程进展)[M]. Beijing: Chemical Industry Press, 2007: 3-8. |
[51] | Zhu Yudan(朱育丹), Lu Xiaohua(陆小华), Guo Xiaojin(郭晓静), Lü Linghong(吕玲红). Preliminary discussion on scientific connotation and research method of aterial-oriented chemical engineering: understanding materials based on confined interfacial fluid behavior on mesoscale [J]. CIESC Journal (化工学报), 2013, 64(1): 148-154. |
[1] | 吴延鹏, 李晓宇, 钟乔洋. 静电纺丝纳米纤维双疏膜油性细颗粒物过滤性能实验分析[J]. 化工学报, 2023, 74(S1): 259-264. |
[2] | 杨天阳, 邹慧明, 周晖, 王春磊, 田长青. -30℃电动汽车补气式CO2热泵制热性能实验研究[J]. 化工学报, 2023, 74(S1): 272-279. |
[3] | 金伟其, 吴月荣, 王霞, 李力, 裘溯, 袁盼, 王铭赫. 化工园区工业气体泄漏气云红外成像检测技术与国产化装备进展[J]. 化工学报, 2023, 74(S1): 32-44. |
[4] | 常明慧, 王林, 苑佳佳, 曹艺飞. 盐溶液蓄能型热泵循环特性研究[J]. 化工学报, 2023, 74(S1): 329-337. |
[5] | 李艺彤, 郭航, 陈浩, 叶芳. 催化剂非均匀分布的质子交换膜燃料电池操作条件研究[J]. 化工学报, 2023, 74(9): 3831-3840. |
[6] | 王阳, 戴永强, 曾炜. 2,5-二羟基苯磺酸增强离子水凝胶材料热电性能的研究[J]. 化工学报, 2023, 74(9): 3946-3955. |
[7] | 赵亚欣, 张雪芹, 王荣柱, 孙国, 姚善泾, 林东强. 流穿模式离子交换层析去除单抗聚集体[J]. 化工学报, 2023, 74(9): 3879-3887. |
[8] | 张佳怡, 何佳莉, 谢江鹏, 王健, 赵鹬, 张栋强. 渗透汽化技术用于锂电池生产中N-甲基吡咯烷酮回收的研究进展[J]. 化工学报, 2023, 74(8): 3203-3215. |
[9] | 徐文杰, 贾献峰, 王际童, 乔文明, 凌立成, 王任平, 余子舰, 张寅旭. 有机硅/酚醛杂化气凝胶的制备和性能研究[J]. 化工学报, 2023, 74(8): 3572-3583. |
[10] | 陈国泽, 卫东, 郭倩, 向志平. 负载跟踪状态下的铝空气电池堆最优功率点优化方法[J]. 化工学报, 2023, 74(8): 3533-3542. |
[11] | 程小松, 殷勇高, 车春文. 不同工质在溶液除湿真空再生系统中的性能对比[J]. 化工学报, 2023, 74(8): 3494-3501. |
[12] | 张瑞航, 曹潘, 杨锋, 李昆, 肖朋, 邓春, 刘蓓, 孙长宇, 陈光进. ZIF-8纳米流体天然气乙烷回收工艺的产品纯度关键影响因素分析[J]. 化工学报, 2023, 74(8): 3386-3393. |
[13] | 林典, 江国梅, 徐秀彬, 赵波, 刘冬梅, 吴旭. 硅基类液防原油黏附涂层的研制及其减阻性能研究[J]. 化工学报, 2023, 74(8): 3438-3445. |
[14] | 刘爽, 张霖宙, 许志明, 赵锁奇. 渣油及其组分黏度的分子层次组成关联研究[J]. 化工学报, 2023, 74(8): 3226-3241. |
[15] | 邢雷, 苗春雨, 蒋明虎, 赵立新, 李新亚. 井下微型气液旋流分离器优化设计与性能分析[J]. 化工学报, 2023, 74(8): 3394-3406. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 3176
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 874
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||